Sybil Attack Bitcoin CryptoCoins Info Club

Eth 2.0 vs Polkadot and other musings by a fundamental investor

Spent about two hours on this post and I decided it would help the community if I made it more visible. Comment was made as a response to this
I’m trying to avoid falling into a maximalist mindset over time. This isn’t a 100% ETH question, but I’m trying to stay educated about emerging tech.
Can someone help me see the downsides of diversifying into DOTs?
I know Polkadot is more centralized, VC backed, and generally against our ethos here. On chain governance might introduce some unknown risks. What else am I missing?
I see a bunch of posts about how Ethereum and Polkadot can thrive together, but are they not both L1 competitors?
Response:
What else am I missing?
The upsides.
Most of the guys responding to you here are full Eth maxis who drank the Parity is bad koolaid. They are married to their investment and basically emotional / tribal in an area where you should have a cool head. Sure, you might get more upvotes on Reddit if you do and say what the crowd wants, but do you want upvotes and fleeting validation or do you want returns on your investment? Do you want to be these guys or do you want to be the shareholder making bank off of those guys?
Disclaimer: I'm both an Eth whale and a Dot whale, and have been in crypto for close to a decade now. I originally bought ether sub $10 after researching it for at least a thousand hours. Rode to $1500 and down to $60. Iron hands - my intent has always been to reconsider my Eth position after proof of stake is out. I invested in the 2017 Dot public sale with the plan of flipping profits back to Eth but keeping Dots looks like the right short and long term play now. I am not a trader, I just take a deep tech dive every couple of years and invest in fundamentals.
Now as for your concerns:
I know Polkadot is more centralized
The sad truth is that the market doesn't really care about this. At all. There is no real statistic to show at what point a coin is "decentralized" or "too centralized". For example, bitcoin has been completely taken over by Chinese mining farms for about five years now. Last I checked, they control above 85% of the hashing power, they just spread it among different mining pools to make it look decentralized. They have had the ability to fake or block transactions for all this time but it has never been in their best interest to do so: messing with bitcoin in that way would crash its price, therefore their bitcoin holdings, their mining equipment, and their company stock (some of them worth billions) would evaporate. So they won't do it due to economics, but not because they can't.
That is the major point I want to get across; originally Bitcoin couldn't be messed with because it was decentralized, but now Bitcoin is centralized but it's still not messed with due to economics. It is basically ChinaCoin at this point, but the market doesn't care, and it still enjoys over 50% of the total crypto market cap.
So how does this relate to Polkadot? Well fortunately most chains - Ethereum included - are working towards proof of stake. This is obviously better for the environment, but it also has a massive benefit for token holders. If a hostile party wanted to take over a proof of stake chain they'd have to buy up a massive share of the network. The moment they force through a malicious transaction a proof of stake blockchain has the option to fork them off. It would be messy for a few days, but by the end of the week the hostile party would have a large amount of now worthless tokens, and the proof of stake community would have moved on to a version of the blockchain where the hostile party's tokens have been slashed to zero. So not only does the market not care about centralization (Bitcoin example), but proof of stake makes token holders even safer.
That being said, Polkadot's "centralization" is not that far off to Ethereum. The Web3 foundation kept 30% of the Dots while the Ethereum Foundation kept 17%. There are whales in Polkadot but Ethereum has them too - 40% of all genesis Ether went to 100 wallets, and many suspect that the original Ethereum ICO was sybiled to make it look more popular and decentralized than it really was. But you don't really care about that do you? Neither do I. Whales are a fact of life.
VC backed
VCs are part of the crypto game now. There is no way to get rid of them, and there is no real reason why you should want to get rid of them. They put their capital at risk (same as you and me) and seek returns on their investment (same as you and me). They are both in Polkadot and Ethereum, and have been for years now. I have no issue with them as long as they don't play around with insider information, but that is another topic. To be honest, I would be worried if VCs did not endorse chains I'm researching, but maybe that's because my investing style isn't chasing hype and buying SUSHI style tokens from anonymous (at the time) developers. That's just playing hot potato. But hey, some people are good at that.
As to the amount of wallets that participated in the Polkadot ICO: a little known fact is that more individual wallets participated in Polkadot's ICO than Ethereum's, even though Polkadot never marketed their ICO rounds due to regulatory reasons.
generally against our ethos here
Kool aid.
Some guy that works(ed?) at Parity (who employs what, 200+ people?) correctly said that Ethereum is losing its tech lead and that offended the Ethereum hivemind. Oh no. So controversial. I'm so personally hurt by that.
Some guy that has been working for free on Ethereum basically forever correctly said that Polkadot is taking the blockchain tech crown. Do we A) Reflect on why he said that? or B) Rally the mob to chase him off?
"I did not quit social media, I quit Ethereum. I did not go dark, I just left the community. I am no longer coordinating hard forks, building testnets, or contributing otherwise. I did not work on Polkadot, I never did, I worked on Ethereum. I did not hate Ethereum, I loved it."
Also Parity locked their funds (and about 500+ other wallets not owned by them) and proposed a solution to recover them. When the community voted no they backed off and did not fork the chain, even if they had the influence to do so. For some reason this subreddit hates them for that, even if Parity did the 100% moral thing to do. Remember, 500+ other teams or people had their funds locked, so Parity was morally bound to try its best to recover them.
Its just lame drama to be honest. Nothing to do with ethos, everything to do with emotional tribalism.
Now for the missing upsides (I'll also respond to random fragments scattered in the thread):
This isn’t a 100% ETH question, but I’m trying to stay educated about emerging tech.
A good quick intro to Eth's tech vs Polkadot's tech can be found on this thread, especially this reply. That thread is basically mandatory reading if you care about your investment.
Eth 2.0's features will not really kick in for end users until about 2023. That means every dapp (except DeFI, where the fees make sense due to returns and is leading the fee market) who built on Eth's layer 1 are dead for three years. Remember the trading card games... Gods Unchained? How many players do you think are going to buy and sell cards when the transaction fee is worth more than the cards? All that development is now practically worthless until it can migrate to its own shard. This story repeats for hundreds of other dapp teams who's projects are now priced out for three years. So now they either have to migrate to a one of the many unpopulated L2 options (which have their own list of problems and risks, but that's another topic) or they look for another platform, preferably one interoperable with Ethereum. Hence Polkadot's massive growth in developer activity. If you check out https://polkaproject.com/ you'll see 205 projects listed at the time of this post. About a week ago they had 202 listed. That means about one team migrated from another tech stack to build on Polkadot every two days, and trust me, many more will come in when parachains are finally activated, and it will be a complete no brainer when Polkadot 2.0 is released.
Another huge upside for Polkadot is the Initial Parachain Offerings. Polkadot's version of ICOs. The biggest difference is that you can vote for parachains using your Dots to bind them to the relay chain, and you get some of the parachain's tokens in exchange. After a certain amount of time you get your Dots back. The tokenomics here are impressive: Dots are locked (reduced supply) instead of sold (sell pressure) and you still earn your staking rewards. There's no risk of scammers running away with your Ether and the governance mechanism allows for the community to defund incompetent devs who did not deliver what was promised.
Wouldn’t an ETH shard on Polkadot gain a bunch of scaling benefits that we won’t see natively for a couple years?
Yes. That is correct. Both Edgeware and Moonbeam are EVM compatible. And if the original dapp teams don't migrate their projects someone else will fork them, exactly like SUSHI did to Uniswap, and how Acala is doing to MakerDao.
Although realistically Ethereum has a 5 yr headstart and devs haven't slowed down at all
Ethereum had a five year head start but it turns out that Polkadot has a three year tech lead.
Just because it's "EVM Compatible" doesn't mean you can just plug Ethereum into Polkadot or vica versa, it just means they both understand Ethereum bytecode and you can potentially copy/paste contracts from Ethereum to Polkadot, but you'd still need to add a "bridge" between the 2 chains, so it adds additional complexity and extra steps compared to using any of the existing L2 scaling solutions
That only applies of you are thinking from an Eth maximalist perspective. But if you think from Polkadot's side, why would you need to use the bridge back to Ethereum at all? Everything will be seamless, cheaper, and quicker once the ecosystem starts to flourish.
I see a bunch of posts about how Ethereum and Polkadot can thrive together, but are they not both L1 competitors?
They are competitors. Both have their strategies, and both have their strengths (tech vs time on the market) but they are clearly competing in my eyes. Which is a good thing, Apple and Samsung competing in the cell phone market just leads to more innovation for consumers. You can still invest in both if you like.
Edit - link to post and the rest of the conversation: https://www.reddit.com/ethfinance/comments/iooew6/daily_general_discussion_september_8_2020/g4h5yyq/
Edit 2 - one day later PolkaProject count is 210. Devs are getting the hint :)
submitted by redditsucks_goruqqus to polkadot_market [link] [comments]

[OWL WATCH] Waiting for "IOTA TIME" 27;

Disclaimer: This is my editing, so there could be always some misunderstandings and exaggerations, plus many convos are from 'spec channel', so take it with a grain of salt, pls.
+ I added some recent convos afterward.
--------------------------------------------------​
📷
Luigi Vigneri [IF]어제 오후 8:26
Giving the opportunity to everybody to set up/run nodes is one of IOTA's priority. A minimum amount of resources is obviously required to prevent easy attacks, but we are making sure that being active part of the IOTA network can be possible without crazy investments.
we are building our solution in such a way that the protocol is fair and lightweight.

📷
Hans Moog [IF]어제 오후 11:24
IOTA is not "free to use" but it's - fee-less
you have tokens? you can send them around for free
📷
Hans Moog [IF]어제 오후 11:25
you have no tokens? you have to pay to use the network
📷
lekanovic어제 오후 11:25
I think it is a smart way to avoid the spamming network problem
📷
Hans Moog [IF]어제 오후 11:26
owning tokens is essentially like owning a share of the actual network
and the throughput it can process
📷
Hans Moog [IF]어제 오후 11:26****​
if you don't need all of that yourself, you can rent it out to people and earn money
📷
Hans Moog [IF]어제 오후 11:27
mana = tokens * time since you own them
simplified
📷
Hans Moog [IF]어제 오후 11:27
the longer you hold your tokens and the more you have, the more mana you have
but every now and then you have to move them to "realize" that mana
📷
lekanovic어제 오후 11:28
Is there any other project that is using a Mana solution to the network fee problem ?
📷
Hans Moog [IF]어제 오후 11:28
nah
the problem with current protocol is that they are leader based
📷
Hans Moog [IF]어제 오후 11:29
you need absolute consensus on who the current leaders are and what their influence in the network is
that's how blockchains works
📷
Hans Moog [IF]어제 오후 11:29
if two block producers produce 2 blocks at the same time, then you have to choose which one wins
and where everybody attaches their next block to
IOTA works differently and doesn't need to choose a single leader
we therefore have a much bigger flexibility of designing our sybil protection mechanisms
in a way, mana is also supposed to solve the problem of "rewarding" the infrastructure instead of the validators
in blockchain only the miners get all the money
running a node and even if it's one that is used by a lot of people will only cost
you won't get anything back
no fees, nothing
the miners get it all
📷
Hans Moog [IF]어제 오후 11:31
in IOTA, the node operators receive the mana
which gives them a share of the network throughput
📷
Hans Moog [IF]어제 오후 11:32
because in blockchain you need to decide whose txs become part of the blocks
and it's not really based on networking protocols like AIMD
📷
lekanovic어제 오후 11:33
And the more Mana your node have, the more trust your node has and you have more to say in the FPC, is that correct?
📷
Hans Moog [IF]어제 오후 11:33
yeah
a node that has processed a lot of txs of its users will have more mana than other nodes
and therefore a bigger say in deciding conflicts
its a direct measure of "trust" by its users
📷
lekanovic어제 오후 11:34
And choosing committee for dRNG would be done on L1 protocol level?
Everything regarding Mana will be L1 level, right?
📷
Hans Moog [IF]어제 오후 11:35
Yeah
Mana is layer1, but will also be used as weight in L2 solutions like smart contracts
📷
lekanovic어제 오후 11:35
And you are not dependant on using SC to implement this
📷
Hans Moog [IF]어제 오후 11:35
No, you don't need smart contracts
That's all the base layer
📷
Hans Moog [IF]어제 오후 11:37
'Time' actually takes into account things like decay
So it doesn't just increase forever
It's close to "Demurrage" in monetary theory
📷
lekanovic어제 오후 11:36
For projects to be able to connect to Polkadot or Cosmos, you need to get the state of the ledger.
Will it be possible to get the Tangle state?
If this would be possible, then I think it would be SUPER good for IOTA
📷
Hans Moog [IF]어제 오후 11:38
Yeah but polkadot is not connecting other dlts
Just inhouse stuff
📷
Hyperware어제 오후 11:39
Is there still a cap on mana so that the rich don't get richer?
📷
Hans Moog [IF]어제 오후 11:39
Yes mana is capped
📷
TangleAccountant어제 오후 11:39
u/Hans Moog [IF] My first thought is that the evolution of this renting system will lead to several big mana renting companies that pool together tons of token holders mana. That way businesses looking to rent mana just need to deal with a reliable mana renting company for years instead of a new individual every couple of months (because life happens and you don't know if that individual will need to sell their IOTAs due to personal reasons). Any thoughts on this?
📷
Hans Moog [IF]어제 오후 11:41
u/TangleAccountant yes that is likely - but also not a bad thing - token holders will have a place to get their monthly payout and the companies that want to use the tangle without having tokens have a place to pay
📷
TangleAccountant어제 오후 11:42
Oh I completely agree. That's really cool. I'll take a stab at creating one of those companies in the US.
📷
Hans Moog [IF]어제 오후 11:42
And everybody who wants to run a node themselves or has tokens and wants use the tangle for free can do so
But "leachers" that would want to use the network for free won't be able to do so
I mean ultimately there will always be "fees", as there is no "free lunch".
You have a certain amount of resources that a network can process and you have a certain demand.
And that will naturally result in fees based on supply / demand
what you can do however is to build a system where the actual users of that system that legitimately want to use it can do so for free,
just because they already "invest" enough by having tokens
or running infrastructure
they are already contributing to the well-being of the network through these two aspects alone
it would be stupid to ask those guys for additional fees
and mana essentially tries to be such a measure of honesty among the users
📷
Hyperware어제 오후 11:47
It's interesting from an investment perspective that having tokens/mana is like owning a portion of the network.
📷
Hans Moog [IF]어제 오후 11:48
Yeah, you are owning a certain % of the throughput and whatever the price will ultimately be to execute on this network - you will earn proportionally
but you have to keep in mind that we are trying to build the most efficient DLT that you could possibly ever build
📷
semibaron어제 오후 11:48
The whole mana (tokens) = share of network throuput sounds very much like EOS tbh
Just that EOS uses DPoS
📷
Hans Moog [IF]어제 오후 11:50
yeah i mean there is really not too many new things under the sun - you can just tweak a few things here and there, when it comes to distributing resources
DPoS is simply not very nice from a centralization aspect
📷
Hans Moog [IF]어제 오후 11:50
at least not the way EOS does it
delegating weights is 1 thing
but assuming that the weight will always be in a way that 21 "identities" run the whole network is bad
in the current world you see a centralization of power
but ultimately we want to build a future where the wealth is more evenly distributed
and the same goes for voting power
📷
Hans Moog [IF]어제 오후 11:52
blockchain needs leader selection
it only works with such a centralizing component
IOTA doesn't need that
it's delusional to say that IOTA wouldn't have any such centralization
but maybe we get better than just a handselected nodes 📷
📷
Phantom3D어제 오후 11:52
How would this affect a regular hodler without a node. Should i keep my tokens elsewere to generate mana and put the tokens to use?
📷
Hans Moog [IF]어제 오후 11:53
you can do whatever you want with your mana
just make an account at a node you regularly use and use it to build up a reputation with that node
to be able to use your funds for free
or run a node yourself
or rent it out to companies if you just hodl
📷
semibaron어제 오후 11:54
Will there be a build-in function into the node software / wallet to delegate ("sell") my mana?
📷
Hans Moog [IF]어제 오후 11:55
u/semibaron not from the start - that would happen on a 2nd layer
------------------------------------------------------------------------------------------------------------
📷
dom어제 오후 9:49
suddenly be incentive to hold iota?
to generate Mana
📷
Hyperware오늘 오전 4:21
The only thing I can really do, is believe that the IF have smart answers and are still building the best solutions they can for the sake of the vision
📷
dom오늘 오전 4:43
100% - which is why we're spending so much effort to communicate it more clearly now
we'll do an AMA on this topic very soon
📷
M [s2]오늘 오전 4:54
u/dom​ please accept my question for the AMA: will IOTA remain a permissionless system and if so, how?
📷
dom오늘 오전 4:57
of course it remains permissionless
📷
dom오늘 오전 5:20
what is permissioned about it?
is ETH or Bitcoin permissioned because you have to pay a transaction fee in their native token?
📷
Gerrit오늘 오전 5:24
How did your industry partners think about the mana solution and the fact they need to hold the token to ensure network throughput?
📷
dom오늘 오전 5:26
u/Gerrit considering how the infrastructure, legal and regulatory frameworks are improving around the adoption and usage of crypto-currencies within large companies, I really think that we are introducing this concept exactly at the right time. It should make enterprise partners comfortable in using the permissionless network without much of a hurdle. They can always launch their own network if they want to ...
📷
Gerrit오늘 오전 5:27
Launching their own network can’t be what you want
📷
dom오늘 오전 5:27
exactly
but that is what's happening with Ethereum and all the other networks
they don't hold Ether tokens either.
📷
Gerrit오늘 오전 5:32
Will be very exciting to see if ongoing regulation will „allow“ companies to invest and hold the tokens. With upcoming custody solutions that would be a fantastic play.
📷
Hans Moog [IF]오늘 오전 5:34
It's still possible to send transactions even without mana - mana is only used in times of congestion to give the people that have more mana more priority
there will still be sharding to keep the network free most of the time
📷
Hans Moog [IF]오늘 오전 5:35
but without a protection mechanism, somebody could just spam a lot of bullshit and you could break the network(수정됨)
you need some form of protection from this
📷
M [s2]오늘 오전 5:36
u/Hans Moog [IF] so when I have 0 Mana, I can still send transactions? This is actually the point where it got strange...
📷
Hans Moog [IF]오늘 오전 5:37
yes you can
unless the network is close to its processing capabilities / being attacked by spammers
then the nodes will favor the mana holders
📷
Hans Moog [IF]오늘 오전 5:37
but having mana is not a requirement for many years to come
currently even people having fpgas can't spam that many tps
and we will also have sharding implemented by then
📷
M [s2]오늘 오전 5:39
Thank you u/Hans Moog [IF] ! This is the actually important piece of info!
📷
Basha오늘 오전 5:38
ok, i thought it was communicated that you need at least 1 mana to process a transaction.
from the blogpost: "... a node with 0 mana can issue no transactions."
maybe they meant during the congestion**, but if that's the case maybe you should add that**
📷
Hans Moog [IF]오늘 오전 5:42
its under the point "Congestion control:"
yeah this only applies to spam attacks
network not overloaded = no mana needed
📷
Hans Moog [IF]오늘 오전 5:43
if congested => favor txs from people who have the most skin in the game
but sharding will try to keep the network non-congested most of the time - but there might be short periods of time where an attacker might bring the network close to its limits
and of course its going to take a while to add this, so we need a protection mechanism till sharding is supported(수정됨)
📷
Hans Moog [IF]오늘 오전 6:36
I don't have a particular problem with EOS or their amount of validators - the reason why I think blockchain is inferior has really nothing to do with the way you do sybil protection
and with validators I mean "voting nodes"
I mean even bitcoin has less mining pools
and you could compare mining pools to dpos in some sense
where people assign their weight (in that case hashing power) to the corresponding mining pools
so EOS is definitely not less decentralized than any other tech
but having more identities having weight in the decision process definitely makes it harder to corrupt a reasonable fraction of the system and makes it easier to shard
so its desirable to have this property(수정됨)

-------------------------------------------------

📷
Antonio Nardella [IF]오늘 오전 3:36
https://twitter.com/cmcanalytics/status/1310866311929647104?s=19
u/C3PO [92% Cooless] They could also add more git repos instead of the wallet one, and we would probably be #1 there too..
----------------------------------------------------------------------------------
Disclaimer:
I'm sorry, maybe I'm fueling some confusion through posting this mana-thing too soon,
but, instead of erasing this posting, I'm adding recent convos.
Certain things about mana seem to be not clear, yet.
It would be better to wait for some official clarification.
But, I hope the community gives its full support to IF, 'cause
there could be always some bumps along the untouched, unchartered way.
--------------------------------------------------------------------------------------
Recent Addition;

Billy Sanders [IF]오늘 오후 1:36

It's still possible to send transactions even without mana - mana is only used in times of congestion to give the people that have more mana more priority
u/Hans Moog [IF] Im sorry Hans, but this is false in the current congestion control algorithm. No mana = no transactions. To be honest, we havent really tried to make it work so that you can sent transactions with no mana during ties with no congestion, but I dont see how you can enable this and still maintain the sybil protection required. u/Luigi Vigneri [IF] What do you think?📷

Dave [EF]오늘 오후 2:19

Suggestion: Sidebar, then get back to us with the verdict.(수정됨)📷2📷

dom오늘 오후 2:27

No Mana no tx will definitely not be the case(수정됨)📷5📷7***[오후 2:28]***Billy probably means the previous rate control paper as it was written by Luigi. I'll clarify with them📷

Hans Moog [IF]오늘 오후 2:29

When was this decided u/Billy Sanders [IF] and by whom? Was this discussed at last resum when I wasnt there? The last info that I had was that the congestion control should only kick in when there is congestion?!?***[오후 2:29]***📷 📷 📷📷

Navin Ramachandran [IF]오늘 오후 2:30

Let's sidebar this discussion and return when we have agreement. Dave has the right idea

submitted by btlkhs to Iota [link] [comments]

[OWL WATCH] Waiting for "IOTA TIME" 20; Hans's re-defined directions for DLT

Disclaimer: This is my editing, so there could be some misunderstandings...
--------------------------------------------
wellwho오늘 오후 4:50
u/Ben Royce****how far is society2 from having something clickable powered by IOTA?
Ben Royce오늘 오후 4:51
demo of basic tech late sep/ early oct. MVP early 2021
---------------------------------------------------
HusQy
Colored coins are the most misunderstood upcoming feature of the IOTA protocol. A lot of people see them just as a competitor to ERC-20 tokens on ETH and therefore a way of tokenizing things on IOTA, but they are much more important because they enable "consensus on data".
Bob
All this stuff already works on neblio but decentralized and scaling to 3500 tps
HusQy
Neblio has 8 mb blocks with 30 seconds blocktime. This is a throughput of 8 mb / 30 seconds = 267 kb per second. Transactions are 401+ bytes which means that throughput is 267 kb / 401 bytes = 665 TPS. IOTA is faster, feeless and will get even faster with the next update ...
-----------------------------------------------------------------------------
HusQy
Which DLT would be more secure? One that is collaboratively validated by the economic actors of the world (coporations, companies, foundations, states, people) or one that is validated by an anonymous group of wealthy crypto holders?
HusQy
The problem with current DLTs is that we use protection mechanisms like Proof of Work and Proof of Stake that are inherently hard to shard. The more shards you have, the more you have to distribute your hashing power and your stake and the less secure the system becomes.
HusQy
Real world identities (i.e. all the big economic actors) however could shard into as many shards as necessary without making the system less secure. Todays DLTs waste trust in the same way as PoW wastes energy.
HusQy
Is a secure money worth anything if you can't trust the economic actors that you would buy stuff from? If you buy a car from Volkswagen and they just beat you up and throw you out of the shop after you payed then a secure money won't be useful either :P
HusQy
**I believe that if you want to make DLT work and be successful then we need to ultimately incorporate things like trust in entities into the technology.**Examples likes wirecard show that trusting a single company is problematic but trusting the economy as a whole should be at ...
**... least as secure as todays DLTs.**And as soon as you add sharding it will be orders of magnitude more secure. DLT has failed to deliver because people have tried to build a system in vacuum that completely ignores things that already exist and that you can leverage on.
----------------------------------------------------------------------------------
HusQy
Blockchain is a bit like people sitting in a room, trying to communicate through BINGO sheets. While they talk, they write down some of the things that have been said and as soon as one screams BINGO! he hands around his sheet to inform everybody about what has been said.
HusQy
If you think that this is the most efficient form of communication for people sitting in the same room and the answer to scalability is to make bigger BINGO sheets or to allow people to solve the puzzle faster then you will most probably never understand what IOTA is working on.
--------------------------------------------------------------------------------
HusQy
**Blockchain does not work with too many equally weighted validators.****If 400 validators produce a validating statement (block) at the same time then only one can survive as part of a longest chain.**IOTA is all about collaborative validation.
**Another problem of blockchain is that every transaction gets sent twice through the network. Once from the nodes to the miners and a 2nd time from the miners as part of a block.**Blockchain will therefore always only be able to use 50% of the network throughput.
And****the last problem is that you can not arbitrarily decrease the time between blocks as it breaks down if the time between blocks gets smaller than the average network delay. The idle time between blocks is precious time that could be used for processing transactions.
-----------------------------------------------------------------------------
HusQy
I am not talking about a system with a fixed number of validators but one that is completely open and permissionless where any new company can just spin up a node and take part in the network.
------------------------------------------------------------------------
HusQy
Proof of Work and Proof of Stake are both centralizing sybil-protection mechanism. I don't think that Satoshi wanted 14 mining pools to run the network.
And "economic clustering" was always the "end game" of IOTA.
-----------------------------------------------------------------------------
HusQy
**Using Proof of Stake is not trustless. Proof of Stake means you trust the richest people and hope that they approve your transactions. The rich are getting richer (through your fees) and you are getting more and more dependant on them.**Is that your vision of the future?
----------------------------------------------------------------------------

HusQy
Please read again exactly what I wrote. I have not spoken of introducing governance by large companies, nor have I said that IOTA should be permissioned. We aim for a network with millions or even billions of nodes.

HusQy
That can't work at all with a permissioned ledger - who should then drop off all these devices or authorize them to participate in the network? My key message was the following: Proof of Work and Proof of Stake will always be if you split them up via sharding ...

HusQy
... less secure because you simply need fewer coins or less hash power to have the majority of the votes in a shard. This is not the case with trust in society and the economy. When all companies in the world jointly secure a DLT ...

HusQy
... then these companies could install any number of servers in any number of shards without compromising security, because "trust" does not become less just because they operate several servers. First of all, that is a fact and nothing else.

HusQy
Proof of Work and Proof of Stake are contrary to the assumption of many not "trustless" but follow the maxim: "In the greed of miners we trust!" The basic assumption that the miners do not destroy the system that generates income for them is fundamental here for the ...

HusQy
... security of every DLT. I think a similar assumption would still be correct for the economy as a whole: The companies of the world (and not just the big ones) would not destroy the system with which their customers pay them. In this respect, a system would be ...

HusQy
... which is validated by society and the economy as a whole probably just as "safely" as a system which is validated by a few anonymous miners. Why a small elite of miners should be better validators than any human and ...

HusQy
... To be honest, companies in this world do not open up to me. As already written in my other thread, safe money does not bring you anything if you have to assume that Volkswagen will beat you up and throw you out of the store after you ...

HusQy
... paid for a car. The thoughts I discussed say nothing about the immediate future of IOTA (we use for Coordicide mana) but rather speak of a world where DLT has already become an integral part of our lives and we ...

HusQy
... a corresponding number of companies, non-profit organizations and people have used DLT and where such a system could be implemented. The point here is not to create a governance solution that in any way influences the development of technology ...

HusQy
... or have to give nodes their OK first, but about developing a system that enables people to freely choose the validators they trust. For example, you can also declare your grandma to be a validator when you install your node or your ...

HusQy
... local supermarket. Economic relationships in the real world usually form a close-knit network and it doesn't really matter who you follow as long as the majority is honest. I also don't understand your criticism of censorship, because something like that in IOTA ...

HusQy
... is almost impossible. Each transaction confirms two other transactions which is growing exponentially. If someone wanted to ignore a transaction, he would have to ignore an exponential number of other transactions after a very short time. In contrast to blockchain ...

HusQy
... validators in IOTA do not decide what is included in the ledger, but only decide which of several double spends should be confirmed. Honest transactions are confirmed simply by having other transactions reference them ...

HusQy
... and the "validators" are not even asked. As for the "dust problem", this is indeed something that is a bigger problem for IOTA than for other DLTs because we have no fees, but it is also not an unsolvable problem. Bitcoin initially has a ...

HusQy
Solved similar problem by declaring outputs with a minimum amount of 5430 satoshis as invalid ( github.com/Bitcoin/Bitcoi…). A similar solution where an address must contain a minimum amount is also conceivable for IOTA and we are discussing ...

HusQy
... several possibilities (including compressing dust using cryptographic methods). Contrary to your assumption, checking such a minimum amount is not slow but just as fast as checking a normal transaction. And mine ...

HusQy
... In my opinion this is no problem at all for IOTA's use case. The important thing is that you can send small amounts, but after IOTA is feeless it is also okay to expect the recipients to regularly send their payments on a ...

HusQy
... merge address. The wallets already do this automatically (sweeping) and for machines it is no problem to automate this process. So far this was not a problem because the TPS were limited but with the increased TPS throughput of ...

HusQy
... Chrysalis it becomes relevant and appropriate solutions are discussed and then implemented accordingly. I think that was the most important thing first and if you have further questions just write :)

HusQy
And to be very clear! I really appreciate you and your questions and don't see this as an attack at all! People who see such questions as inappropriate criticism should really ask whether they are still objective. I have little time at the moment because ...

HusQy
... my girlfriend is on tour and has to take care of our daughter, but as soon as she is back we can discuss these things in a video. I think that the concept of including the "real world" in the concepts of DLT is really exciting and ...

HusQy
... that would certainly be exciting to discuss in a joint video. But again, that's more of a vision than a specific plan for the immediate future. This would not work with blockchain anyway but IOTA would be compatible so why not think about such things.
-----------------------------------------------------------------------

HusQy
All good my big one :P But actually not that much has changed. There has always been the concept of "economic clustering" which is basically based on similar ideas. We are just now able to implement things like this for the first time.
----------------------------------------------------------------------------------

HusQy
Exactly. It would mean that addresses "cost" something but I would rather pay a few cents than fees for each transaction. And you can "take" this minimum amount with you every time you change to a new address.

HusQy
All good my big one :P But actually not that much has changed. There has always been the concept of "economic clustering" which is basically based on similar ideas. We are just now able to implement things like this for the first time.
-----------------------------------------------------------------------------------

Relax오늘 오전 1:17
Btw. Hans (sorry for interrupting this convo) but what make people say that IOTA is going the permissioned way because of your latest tweets? I don't get why some people are now forecasting that... Is it because of missing specs or do they just don't get the whole idea?

Hans Moog [IF]오늘 오전 1:20
its bullshit u/Relaxan identity based system would still be open and permissionless where everybody can choose the actors that they deem trustworthy themselves but thats anyway just sth that would be applicable with more adoption
[오전 1:20]
for now we use mana as a predecessor to an actual reputation system

Sissors오늘 오전 1:31
If everybody has to choose actors they deem trustworthy, is it still permissionless? Probably will become a bit a semantic discussion, but still

Hans Moog [IF]오늘 오전 1:34
Of course its permissionless you can follow your grandma if you want to :p

Sissors오늘 오전 1:36
Well sure you can, but you will need to follow something which has a majority of the voting power in the network. Nice that you follow your grandma, but if others dont, her opinion (or well her nodes opinion) is completely irrelevant

Hans Moog [IF]오늘 오전 1:37
You would ideally follow the people that are trustworthy rather than your local drug dealers yeah

Sissors오늘 오전 1:38
And tbh, sure if you do it like that is easy. If you just make the users responsible for only connection to trustworthy nodes

Hans Moog [IF]오늘 오전 1:38
And if your grandma follows her supermarket and some other people she deems trustworthy then thats fine as well
[오전 1:38]
+ you dont have just 1 actor that you follow

Sissors오늘 오전 1:38
No, you got a large list, since yo uwant to follow those which actually matter. So you jsut download a standard list from the internet

Hans Moog [IF]오늘 오전 1:39
You can do that
[오전 1:39]
Is bitcoin permissionless? Should we both try to become miners?
[오전 1:41]
I mean miners that actually matter and not find a block every 10 trillion years 📷
[오전 1:42]
If you would want to become a validator then you would need to build up trust among other people - but anybody can still run a node and issue transactions unlike in hashgraph where you are not able to run your own nodes(수정됨)
[오전 1:48]
Proof of Stake is also not trustless - it just has a builtin mechanism that downloads the trusted people from the blockchain itself (the richest dudes)

Sissors오늘 오전 1:52
I think most agree it would be perfect if every person had one vote. Which is pr oblematic to implement of course. But I really wonder if the solution is to just let users decide who to trust. At the very least I expect a quite centralized network

Hans Moog [IF]오늘 오전 1:53
of course even a trust based system would to a certain degree be centralized as not every person is equally trustworthy as for example a big cooperation
[오전 1:53]
but I think its gonna be less centralized than PoS or PoW
[오전 1:53]
but anyway its sth for "after coordicide"
[오전 1:54]
there are not enough trusted entities that are using DLT, yet to make such a system work reasonably well
[오전 1:54]
I think the reason why blockchain has not really started to look into these kind of concepts is because blockchain doesnt work with too many equally weighted validators
[오전 1:56]
I believe that DLT is only going to take over the world if it is actually "better" than existing systems and with better I mean cheaper, more secure and faster and PoS and PoW will have a very hard time to deliver that
[오전 1:56]
especially if you consider that its not only going to settle value transfers

Relax오늘 오전 1:57
I like this clear statements, it makes it really clear that DLT is still in its infancy

Hans Moog [IF]오늘 오전 1:57
currently bank transfers are order of magnitude cheaper than BTC or ETH transactions

Hans Moog [IF]오늘 오전 1:57
and we you think that people will adopt it just because its crypto then I think we are mistaken
[오전 1:57]
The tech needs to actually solve a problem
[오전 1:57]
and tbh. currently people use PayPal and other companies to settle their payments
[오전 1:58]
having a group of the top 500 companies run such a service together is already much better(수정됨)
[오전 1:58]
especially if its fast and feeless
[오전 2:02]
and the more people use it, the more decentralized it actually becomes
[오전 2:02]
because you have more trustworthy entities to choose of

Evaldas [IF]오늘 오전 2:08
"in the greed of miners we trust"


submitted by btlkhs to Iota [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Matic Network: How to achieve the solution of most prominent issues faced by most of the blockchains.

Matic Network: How to achieve the solution of most prominent issues faced by most of the blockchains.
Smart contract platforms and cryptocurrencies have captured mass attention but still have not been able to achieve mass adoption due to scalability and user experience issues. Even on Ethereum, which is the most widely used smart contracts platform, there have not been many examples of DApps which have seen mass adoption. Essentially this means that even the most advanced and widely used platforms are not ready for mass adoption yet. On the other hand, there are a few smart contract platforms which boast of higher transaction throughput, but they compromise on decentralization in order to improve transaction speeds. Matic Network strives to solve the scalability and usability issues, while not compromising on decentralization. Matic is a Layer 2 solution that seeks to solve the problems facing blockchain-based applications through the use of sidechains. For now, Matic focuses on the Ethereum blockchain but plans to extend its offerings for other smart contracts platforms in the future. We aim to be the de-facto platform on which developers will deploy and run decentralized applications.
Main issues that faces others blockchain:
· Scalability
· High transaction fees
· Interoperability
· Poor usability
· 50% Sybil attack

How Matic Network trying to achieve the solution of these problems:

The Matic Network comes packed with features which its developers promote as solutions to the prominent issues faced by most of the blockchain projects.
Scalability:
Scalability is an alarming issue now a days. Because scalability is one of the most frequently cited reasons that blockchain adoption isn’t happening faster, because without being able to increase the speed and size of a Blockchain network, we can’t ever hope to impact more than just a handful of people. Bitcoin and Ethereum have only managed to gain a combined market cap of over $200 billion because of the promise that they will one day achieve mainstream adoption.
In response to these blockchain scalability issues, the Matic Network has poured a lot of energy into developing scalability solutions to the adapted implementation of the Plasma framework for Ethereum to start with, but the “vision” of the Matic development team is to provide off/side chain scaling solutions for blockchains in general. These solutions are all interesting in their own right, but I would argue that they are less important for scalability than design decisions in the protocol itself, and the use cases which are being targeted by those designs. The scalability under Proof of Stake is also greatly increased. While Bitcoin and similar Proof of Work cryptocurrencies struggle to get double digit transactions per second on the main chain (Bitcoin is around 8|) Ethereum is still limited to just 15 TPS and sees costs per transaction at around $0.006. Matic aims to offer 10,000 TPS on a single chain and lower potential costs, while maintaining the EVM and key concepts. To improve scalability, Matic Network uses a dual strategy of Proof of Stake at the check pointing layer and Block Producers at the block producer layer to achieve faster block times and achieves finality on the main chain using the checkpoints and fraud proofs.
Every user provides the power for their own transactions. Scalability and decentralization can co-exist, but security risks become greater. Developers will choose the platform that best suits their needs, and users will choose the platforms that function best, according to them. Some users may be willing to sacrifice security for scalability; others, scalability for security. We evaluate the core features based on the overall mandate of the system. Thus Matic Network provides a platform that meet the users need where they executes their transaction within seconds fearlessly and solves the issues that other blockchain faces now a days.
Finally, Matic Network is solves the scalability problem by building a decentralized platform using adapted version of plasma framework that provides a solution faster and extremely low cost transaction with finality on main chain.
Cut-off the high transaction fees:
Matic Network promises to bring down transactions fees and improve user experience. In addition to purely technological considerations, some blockchain implementations are seen as preventing their mass adoption by applying high gas and similar fees. Considering that the payment of tokens in exchange for services or transactions is the backbone of many crypto projects’ micro-economy, the Matic Network team opted for the economy of scale as its solution. It features a dedicated layer on which the block producers handle a high number of transactions, thus keeping their costs down. The interoperability and smooth transition from the main chain to Matic chain should also improve the UX.
Interoperability:
Developers often ignore standards when building a blockchain for more freedom, but this can cause interoperability and communication issues. The most major challenge to interoperability is multiple blockchain networks with different parameters like consensus models, smart contract functionality and transaction schemes. Matic Network supports assets interoperability and multi micro payment channels compatible with other off-chain solutions.
Assets on different sidechains are to achieve interoperability as long as they are provided for by the Matic Network. As the Matic Network runs on the state-based system of the EVM, it does not need an opening of the payment channels between two parties. In Matic Network all transactions are final and instantly confirmed. . Matic foundation intends to provide Matic wallet, payment APIs & SDKs, products, identity solutions and other enabling solutions that will allow developers to design, implement and migrate DApps built on base platforms like Ethereum.
Poor usability:
Today, except for buying and selling cryptocurrencies, only a small number of people engage with blockchain technology because there are few user-friendly experiences. Developing blockchain solutions is also challenging. When engaging with blockchain jargon abounds, addresses are meaningless streams of letters and numbers, and programming requires special tools such as the Solidity language for smart contracts. Emerging technologies require compelling user experiences to drive adoption. Blockchain solutions that offer attractive user experiences, such a Matic, can thrive. To expand beyond innovators and early adopters, blockchain-based solutions must offer compelling experiences. The key pillars that form the basis of Matic Network’s ideology is the improvement of user experience, this area is poorly developed for Blockchain applications as of now. The Matic Development team has already built high quality user experience Mobile/Web browser libraries which will enable businesses to create real world end user applications on a large scale. The development roadmap of the Matic Network also includes supporting cross-chain transfers and third-party Decentralized exchanges, liquidity pools etc. End Users will interact in a convenient manner with applications that use Matic Network, Matic also provide a smooth interface and provide native mobile apps .In fact, developer experience is a special area of focus for the project. The project has built a number of tools to make it easier to interact with the Matic Network, such as Matic SDK, Matic Wallet, Dagger (Ethereum notification engine with real-time updates from the Ethereum blockchain), and Block Explorer. Moreover, Matic’s team is also arguably the first to implement Plasma Predicates, which significantly simplifies the upgradability of Plasma contracts, making the addition of new features a much easier task.
SECURITY:
Security refers to the level of defensibility a blockchain has against attacks from external sources. Internally, or within the blockchain itself, it’s a measure of how immutable the system is to change. For most blockchains, there are many, many potential security risks. In our opinion, decentralization and security go hand in hand. To be secure, a crypto protocol needs to be resilient in the short term and immutable in the long term.
So Matic protocol provides a platform where users are able to prevent and/or recover from short-term attacks (resilience), without making changes to previous states of the distributed ledger (immutability).
This is ideal for applications that require sovereign grade security and deal with confidential data. Anything in the realm of financial services would likely require the highest degree of security. Even crypto exchanges — one of the biggest targets of hackers — would be far better suited to deal with such attacks if built on platform, and provides a security for Matic holder against 50% Sybil attack.
In addition, quickly growing networks will require a fast consensus mechanism, in order to validate more transactions while delivering the same speed to individual users. This can only occur in Matic Network smart contract Layer 2, which is powered by plasma .
Final thought:
Matic Network aims to solve the actual problems faced by blockchain industry. Matic Network has collaboration with so many projects to provide a better user experience with lower transaction costs to end users. The team is solid and experienced enough in terms of development and delivering the product. To some extent, Matic Network forego scalability to make the network as secure and decentralized as possible. This is the key reason of its adoption .Matic is a promising project. Matic have opened the door to completely addresses real pain points of the market, scalability and cost, without compromising on security. The Matic Network believes in simplifying the interaction between users and the decentralized world- they want to make using decentralized systems so easy that anyone can do it without knowledge of the complex technologies powering their actions.
Written by Tahira siddiqui
Follow Matic Network on twitter : https://twitter.com/maticnetwork
Join the Network : https://matic.network/
https://preview.redd.it/lm5ozmrdtri51.jpg?width=3000&format=pjpg&auto=webp&s=3dc52a82bcdddbfe9d9cc0052b0d5435630b9542
submitted by Tahira_19 to maticnetwork [link] [comments]

Namecoin and the future of self-sovereign digital identity.

Namecoin's motto is "Bitcoin frees money – Namecoin frees DNS, identities, and other technologies."
biolizard89 has done fantastic work on the DNS part, but let's focus on the identity use case here. Recent events have convinced me that digital identity on the internet is broken. Consider:
What was true in 1993 when cartoonist Peter Steiner wrote "On the internet, nobody knows you are a dog" is still true today. The only difference is that identity is increasingly being weaponized using AI/ML so "On the internet, nobody knows you are a bot" would perhaps be more apt.
I read the following comment from a user on slashdot yesterday:
For the time being, you can assume that this comment was written by a human being. You can click on my username, look back at my history of posts, and go, "OK, here's a bunch of posts, by a person, going back more than a decade, to the TIME BEFORE BOTS." That is, before the first year of 2020.
Since humans are likely to adopt the majority opinion, bad actors find real value in being able to control the narrative online by surrounding the reader with manufactured opinions by bots that due to advances in ML/AI are quickly becoming indistinguishable from real users. This amounts to a Sybil attack on the minds of digital content consumers and poses major threat to the integrity of our social fabric.
Apart from the recent twitter incident used for scamming, nation states have been known to create massive bot armies of fake and hijacked user accounts to try and shift the narratives regarding the Hong Kong independence protests as well as national elections. This will only increase.
Currently, our digital identity is fragmented into silo's largely controlled by government institutions and mega corporations (FAANG) based on a "Trust us" model. As recent events have proven, this is a bad model and in dire need of improvement/replacement. IMHO we need to move from "Trust us" to a "Trust but verify" model where the user is in full control of their digital identity.
Namecoin can and should play an important role in building this 'web of trust composed of self-sovereign identities" as it is neutral (no owner), permissionless and secure (merge-mined). Daniel already developed a proof of concept with NameID but what can we do to take this further?
Personally I'd like to see users create Namecoin identities and link them to their social identities (e.g. Google, Facebook, Twitter, Reddit, etc). Then whenever they create content, they sign it with their private keys. This would allow a reader to verify the content was created by the user. Content verification would have stopped the recent twitter hack, because even if the hackers would have access to internal admin tools they would not have the private keys that the users produce valid content with. "Not your keys, not your content"
Content verification is only one part. Ideally a user would like to verify the integrity of the content creator as well. E.g. has this user passed human verification in any of the linked platforms? Does a trusted linked entity vouch for the reputation or integrity of this user (e.g. a government entity, financial entity or non-governmental organization?). This would require those platforms to allow linking of Namecoin ID with their Platform ID and allow lookup and signing of metadata provided by these platforms. (e.g. UserID Y is linked to PlatformID X and completed human verification on date Z, signed Twitter).
I image users could install an extension similar to uBlock or Privacy Badger that contains human curated blacklists and heuristics that operate on Namecoin entities to perform these checks and flag or filter content and users that fail integrity checks. This would allow a users to automatically weed out potential bots and trolls but keep full control of this process themselves, avoiding potential censorship if this task would fall on the platform owners themselves (something governments are pushing for).
We could take this even further and integrate Namecoin ID's in software and hardware devices as well. This could create chains of trust to verify the entire chain of content creation and manipulation to the final content posted on a social platform. Where every entity signs the resulting content. (E.g. camera -> photoshop -> twitter post)
Apart from signing content/messages (PGP style). Namecoin could perhaps also be used for managing identity tokens in a users 'Identity wallet'. Looking into my physical wallet this could include things like credit cards, insurance cards, government issued IDs, membership cards, transportation cards, key cards, etc. This could be done similar to 'colored coins' on Bitcoin. But would have to support some type of smart contract functionality to be useful (e.g. expiring tokens, etc).
I'm not a developer nor a technical writer, but I do think we need to think long and hard about how we can solve digital identity in a way that empowers users to trust and verify the content and identities of the peers we interact with online while also respecting privacy and preventing censorship by external parties. Namecoin could be the better path to building this web of trust, but given the current pace of AI/ML and the willingness by bad actors to weaponize it at scale against users interests we might not have much time. (Apologies for the rant!)
submitted by rmvaandr to Namecoin [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

AT2: Asynchronous Trustworthy Transfers

AT2, a fairly new unknown tech to create a decentralized asset transfer system without blockchain.
This week there was an article @ www.computing.co.uk. See below.
link: https://www.computing.co.uk/feature/4017118/at2-answer-cryptocurrency-energy-performance
AT2 paper: https://arxiv.org/pdf/1812.10844.pdf

Could AT2 be the answer to cryptocurrency's energy and performance problems?
Blockchains are slow, wasteful and ill-suited for digital currencies, say researchers who believe they've found a better way
Blockchains solve a hard problem: how to ensure consensus across a distributed, decentralised network, where messages arrive out of order if at all, where individual nodes may fail, and where a certain proportion may be actively malicious.
The original blockchain, bitcoin, was designed to support a novel digital currency, and the issue its consensus algorithm solved was preventing double-spend. It also successfully introduced game theory for security: adversaries would have to spend more money on an attack than they could expect to gain financially. All this and the original protocol was just a few hundred lines of code.
But this achievement came at a high cost in terms of energy use and performance.
With bitcoin, a new leader is required to verify each block of transactions, that leader being the first device to complete a computationally heavy challenge (Proof of Work, PoW). As a result, the blockchain's throughput is painfully slow at around seven transactions per second (Visa claims it can do 56,000) and the whole process is massively wasteful of energy. These drawbacks have been surmounted, to some degree, in newer blockchain designs using overlay networks, sharding and different types of "proofs of" and by non-blockchain directed acyclic graphs (DAGs), but each requires tradeoffs in terms of centralisation, complexity or security.
A group of researchers led by computer scientist Professor Rachid Guerraoui of Swiss University Ecole Polytechnique Fédérale de Lausanne (EPFL) decided to look afresh at the problem. Is this gargantuan security apparatus, in which every node in a network of thousands or millions must come to a consensus about the ordering of events, really necessary everytime someone makes a purchase? Could a leaderless mechanism be applied to the problem instead? If so, could it be guaranteed to be reliably consistent, even when a certain number of nodes are malicious or faulty (Byzantine)?
The headline answer, published in an initial paper last year, is that network-wide consensus is overkill for simple asset transfers. If cryptocurrencies could be rebooted, all the fossil fuels burned by miners of bitcoin and its clones could be left in the ground and Visa-level transaction speeds could be achieved without any loss of security or reliance on centralised control. As compact as Satoshi's original bitcoin protocol itself, the few hundred lines of code that make up their Asynchronous Trusted Transfers (AT2) algorithm could solve some of the tricky problems that have plagued decentralised token-based networks from the off.
AT2 can be used to validate transactions within two different decentralised networking scenarios: (1) permissioned or small unpermissioned networks, and (2) global scale unpermissioned networks. In the first case, the algorithm uses quorum for validating actions, whereby a certain proportion of the network's nodes must agree an action is correct before it can take place. The second scenario, networks made up of very large number of machines (nodes), uses probabilistic sampling. Instead of asking all nodes it checks a number of randomly selected nodes for their viewpoint. This is much more efficient and scalable than the deterministic quorum but carries a tiny (ca. 10-15) possibility of failure.
Doing away with network-wide consensus means AT2 sidesteps the bane of decentralised networks, the FLP Impossibility - the theory that in a fully asynchronous system, a deterministic consensus algorithm cannot be safe, live and fault-tolerant.
Computing caught up with Matteo Monti, who worked on the statistical aspects of AT2, and by email with Guerraoui to find out more. We also spoke to David Irvine of networking firm MaidSafe, which has adopted AT2 to simplify its consensus process.

Incentivising improvements
We asked Monti (pictured) to summarise the innovation that AT2 brings to the table.
"What we noticed is that there's a specific subclass of problems that can be solved on a decentralised, distributed network without requiring consensus," he said. "The main use for consensus at the moment, cryptocurrency transactions, is part of that class. We can solve this using a weaker abstraction and in doing so you gain the ability to work in a completely asynchronous environment."
Bitcoin doesn't even solve consensus well. It solves eventual consensus which an even weaker abstraction, he added, whereas AT2 can guarantee strong eventual consistency. Another issue it tackles is PoW's incentivization model which means that improvements in technology do not translate into a better performing network.
"With bitcoin, the bottleneck is always electricity. If everyone doubles their computational speed it's not going to change the efficiency of the network. Everyone's competing not to compute but to waste energy."
In place of PoW, AT2 uses ‘Proof of Bandwidth', i.e. evidence of recent interaction, to verify that a node is real. Since it doesn't rely on consensus, the performance of AT2 should allow messaging speeds across the network that approach the theoretical maximum, and improvements in hardware will translate into better overall performance.

Security measures
Blockchains like bitcoin are extremely resilient against Sybil attacks; bitcoin is still running after all, in the face of unwavering opposition from powerful nation states and bankers. Sybil attacks are a major vulnerability in permissionless decentralised networks where anyone can join anonymously, but there are others too.
Monti said the most challenging aspect of designing the AT2 algorithm was distilling all the potential types of dangerous Byzantine behaviour into a manageable set so they could be treated using probability theory. As a result of studying many possible failure scenarios, including Sybil, the algorithm is able to quickly react to deviations from the norm.
Other security features flow from the fact that each network node needs to know only a limited amount about its counterparts for the system to function. For example, the randomness used in sampling operations is generated locally on the calling device rather than on the network, making this vector hard to utilise by an attacker looking to influence events.
Signals are passed across the network via a messaging system called Byzantine Reliable Broadcasting (BRB) a gossip-based method by which nodes can quickly and reliably come to an agreement about a message even if some are Byzantine.
As a result of these features, AT2 does not rely on economic game theory for security, said Monti.
"I'd go as far as saying that the moment you need to implement an economic disadvantage to attacking the system, it means that you failed to make it impossible to attack the system. We don't care about your interests in attacking the system. What we want to achieve is a proof that no matter what you do, the system will not be compromised."

‘Crypto-Twitter'
AT2 starts with the simple idea that rather than requiring the whole network to maintain a time-ordered record of my transactions (as with a blockchain or DAG), the only person who needs to keep that tally is me.
If I decide to spend some money, I merely announce that fact to the network over BRB and this request will be held in a memory snapshot escrow. Depending on the network type, a representative sample or a quorum of other nodes then check my balance and inspect my ordered transaction history to ensure that the funds haven't already been spent (each transaction has a unique sequential ID) and provided all is correct the transaction is guaranteed to go through, even if up to a third of those validators are malicious. If I try to cheat, the transaction will be blocked.
Monti likens a wallet on an AT2 network to a social media timeline.
"What we've proved, essentially, is that you can have a cryptocurrency on Twitter," he explained.
"A payment works in two steps. First, there's a withdrawal from my account via a tweet, then the second step is a deposit, or a retweet. I tweet a message saying I want to pay Bob. Bob then retweets this message on his own timeline, and in the act of retweeting he's depositing money in his account.
"So everyone has their own independent timeline and while the messages - my tweets - are strictly ordered, that's only in my own timeline; I don't care about ordering relative to other timelines. If I try to pay someone else, it will be obvious by the sequence of tweets in my account, and my account only, whether I can perform that payment.
"In contrast, consensus effectively squeezes all of the messages into a unique timeline on which everybody agrees. But this is overkill, you don't need it. We can prove that it still works even if the ordering is partial and not total, and this enables us to switch from consensus to reliable broadcast."
But of course, nothing comes for free. AT2 can verify exchanges of tokenised assets, but aside from arrangements between a small number of opted-in parties, it does not have the ability to support smart contracts of the type that are viable on ethereum and other blockchains, because this does require network-wide consensus. Guerraoui said his team is working on "refinements and extensions" to support such functionality in the future.

Early adopters
AT2 is still pretty ‘cutting edge'. Three papers have been accepted for peer review the latest published in February, but it provides the sort of efficiencies and simplifications that could bring real progress. Guerraoui said AT2 has "received interest from many groups including companies ‘selling' blockchain approaches, as well as companies and organisations using such approaches".
One organisation that has already picked up on the potential of AT2 is Scotland's MaidSafe, creator of the SAFE Network. MaidSafe is already using AT2 to replace its Parsec consensus algorithm, which testing showed was indeed overkill for many network operations. CEO David Irvine said he and his colleagues came across AT2 while working on another way of propagating changes to data without consensus, conflict-free data replicated types (CRDTs), promptly forked the code and started to apply it.
SAFE, currently in Alpha, is a sharded network, meaning it's subdivided into small semi-autonomous sections. On a network level, the way it works is that trusted 'elder' nodes vote on a requested action then pass instructions to other sections to carry it out.
AT2 allows the initial task of accumulating the votes for an action, which had been done by the elders using a consensus algorithm, to be moved off the network and onto the requesting client which is much more lightweight and efficient. Once a quorum of votes has been gathered, the client simply resubmits the request and the elders will ensure it's carried out. The system is much simpler and should be more secure too. "It's 200 lines of logic compared to 15,000 for a start," Irvine said.
AT2 is not just used to validate token transfers. By the same mechanism, it can also be used to authorise requests to store or change data. Together with CRDTs, which guarantee that such changes cannot fail, this makes for a very tight and efficient ship, said Irvine.
"AT2 is for us a missing link. The difficulty of several nodes agreeing is simplified by the initiator taking on the effort of accumulating quorum votes. It seems so simple but in fact, it's an amazing innovation. It certainly falls into the category of 'why didn't I think of that?'."
submitted by ZaadNek to CryptoTechnology [link] [comments]

Sybil Attacks - Blockchain Security The costs of HACKING BITCOIN - Sybil Attacks Explained ... Why Dash is the Most Sybil Attack-Resistant Cryptocurrency -- By Far What are Sybil attacks and why are they relevant to blockchain? Do you REALLY understand Bitcoin 51% Attack? Programmer ...

Chainalysis CEO Denies 'Sybil Attack' on Bitcoin's Network Mar 14, 2015 at 14:21 UTCUpdatedMar 16, 2015 at 22:32 UTC UPDATE (14th March 16:18 GMT): Additional comment added fromChainalysis CEOMichael Grnager. Compliance startup Chainalysis was forced to defend itself today afterallegations its surveillance tactics ha Chainalysis CEO Denies 'Sybil Attack' on Bitcoin's Network March 15, 2015 / 0 Comments / News; UPDATE (14th March 16:18 GMT): Additional comment added from Chainalysis CEO Michael Grønager. Compliance startup Chainalysis was forced to defend itself today after allegations its surveillance tactics had disrupted services and threatened the privacy of bitcoin users. The Swiss company, headed by ... Bitcoin Core dev Pieter Wuille has pointed out that, in the context of Bitcoin, the term ‘Sybil’ had traditionally been used to describe both of these vectors, though a 2015 paper called the Eclipse Attacks on Bitcoin’s Peer-to-Peer Network helped us understand and identify the fact that there is a difference between a Sybil and an eclipse attack. A Sybil attack is a malicious attack on a peer-to-peer network in which a person or organization attempts to take over the network by using multiple identities to control multiple accounts or nodes. In the context of distributed ledger technology, this is a type of attack that is also well know and important for the Bitcoin and Ethereum ecosystem. A Sybil attack is an attempt to control a peer network by creating multiple fake identities. To outside observers, these fake identities appear to be unique users. However, behind the scenes, a single entity controls many identities at once. As a result, that entity can influence the network through additional voting power in a democratic network, or echo chamber messaging in a social network.

[index] [21060] [2437] [23236] [48126] [8752] [50969] [44115] [15065] [44235] [46122]

Sybil Attacks - Blockchain Security

Watch live: https://ivanontech.com/live In this video I make some calculations about the costs of making a sybil attack on the Bitcoin network. If this video helped you and you'd like to give back ... Eclipse Attacks on Bitcoin’s Peer-to-Peer Network (USENIX 2015) - Duration: 27:15. ... What is a Sybil attack and how can it affect peer networks? - Duration: 1:36. Blockstack 7,528 views. 1:36 ... A Sybil Attack in a peer-to-peer network happens when one person uses many, many nodes for a malicious end. How is this achieved, and what does it cost? Amanda B. Johnson explains why Dash in ... While fungibility is an essential property of good money, Bitcoin has its limitations in this area. Numerous fungibility improvements have been proposed; however none of them have addressed the ...

#