Bitcoin Difficulty. All about cryptocurrency - BitcoinWiki

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

My collection of amazing early Bitcoin comments, right here from Reddit:

On buying (or not) a gaming rig to mine Bitcoin:
With the difficulty skyrocketing and exchange rates sitting stagnant at $5~8 for the last week or so, you pretty much missed the boat to buy dedicated mining hardware, IMHO. If you already have the hardware, or are looking for an excuse to buy a couple bitchin' new graphics cards for a gaming rig, there's definitely money to be made mining when you're not using it.
But I don't think I'd drop $1k into a rig that's only to mine with unless it was $1k I'd blow on something even more retarded. I certainly wouldn't sink next month's rent into it.
https://reddit.com/AskReddit/comments/hnp7f/_/c1wuv1b/?context=1
On easily cashing out Bitcoin using mtgox:
I think getting money is not that difficult. The daily volume on mtgox is over $100K, so I think anyone can currently sell Bitcoins for USD without problems.
https://reddit.com/AskReddit/comments/hnp7f/_/c1wuhjh/?context=1
On it being $10:
Is Bitcoin 10 usd yet?
https://reddit.com/Bitcoin/comments/hpq6c/is_bitcoin_10_usd_yet/
Bonus: Snapshot of the isbitcoin10usdyet website from 2011: https://web.archive.org/web/20110606125320/http://www.isbitcoin10usdyet.com/
Mtgox might disappear:
400K bitcoins is $4M dollars. Given all risks and uncertainties around bitcoins, no wonder some of the early founders exit their investments. Tomorrow mtgox or dwolla may disappear. It is the matter of one government intervention.
https://reddit.com/Bitcoin/comments/hq1wj/_/c1xgesq/?context=1
Bitcoin is terrible at friendly front-end:
This is a dangerous point-of-view. The entire bitcoin ecosystem is ugly, confusing, and deeply unusable. Really think about the questions posed in the article. The client works, as in, it creates a functional front-end for some bitcoin-related tasks, but it isn't at all designed for how humans would want to interact with the currency. The point of the article isn't that the client is hard, it's that the client works pretty well for obsessive nerds (present company included), but if bitcoin is really going to succeed at the goals it sets out to accomplish, it needs to not only be usable by normal people, it needs to be exceptional. If you think it's reasonably usable, you're welcome to that opinion, but please understand that you're the exact sort of person Mr. Falkvinge was referring to. Great with complex logic, terrible at friendly front-end.
https://reddit.com/Bitcoin/comments/hrqpm/_/c1xtfuy/?context=1
On wallets going out of sync:
One thing that I think is lacking is the ability to functionally use wallets on different machines as they will tend to get out of sync. This might be able to be overcome if new addresses were deterministically created from a seed contained in the wallet, but there are probably better ways.
Also, the UI for the official client is kind of a bone.
https://reddit.com/Bitcoin/comments/hrqpm/_/c1y730k/?context=1
On Bitcoin’s ease of use:
In fact, BTC is in such an infant state right now only enthusiasts investors, and geeks who can actually grasp how the system truly works, are using it for real.
The usability issues raised by the article are real. No grandma, or any well respected enterprise for that matter, would accept working with this type of GUI. If anything, a REAL enterprise backend still needs to be developed to handle the BTC's ungly guts, with all transactions details, hashes, mining, wallets, proxy connections, peer discovery via IRC channels... I mean... this is all too RAW for the end user. I can see a near future where startups will begin to offer user friendly GUIs, online access, maybe even online banking for your bitcoin accounts, automated backups and safety mechanisms to protect your coins in case of theft.
All of us geeks will end up supporting the bootstrap of this network so that, later on, your grandma will be able to use this just as she would use a credit card today.
https://reddit.com/Bitcoin/comments/hrqpm/_/c1xungz/?context=1
rBitcoin is not a sub for memes:
This isnt a subreddit for memes. Take it back to pics
https://reddit.com/Bitcoin/comments/i7z0v/_/c21m3ld/?context=1
I think I’ll keep my money elsewhere:
This further reinforces BC's image as nothing more than a Ponzi scheme. When the distribution is skewed that heavily towards early adopters, they will have almost total control over the market. Those 32 could manipulate to their hearts content. I think I'll keep my money elsewhere....
https://reddit.com/Bitcoin/comments/ifl26/_/c23e3ei/?context=1
Tulip mania:
http://en.wikipedia.org/wiki/Tulip_mania
https://www.reddit.com/AskReddit/comments/hnp7f/i_just_invested_half_of_my_next_months_rent_in/c1wuhkt/
submitted by wisequote to btc [link] [comments]

Filecoin | Development Status and Mining Progress

Author: Gamals Ahmed, CoinEx Business Ambassador
https://preview.redd.it/5bqakdqgl3g51.jpg?width=865&format=pjpg&auto=webp&s=b709794863977eb6554e3919b9e00ca750e3e704
A decentralized storage network that transforms cloud storage into an account market. Miners obtain the integrity of the original protocol by providing data storage and / or retrieval. On the contrary, customers pay miners to store or distribute data and retrieve it.
Filecoin announced, that there will be more delays before its main network is officially launched.
Filecoin developers postponed the release date of their main network to late July to late August 2020.
As mentioned in a recent announcement, the Filecoin team said that the initiative completed the first round of the internal protocol security audit. Platform developers claim that the results of the review showed that they need to make several changes to the protocol’s code base before performing the second stage of the software testing process.
Created by Protocol Labs, Filecoin was developed using File System (IPFS), which is a peer-to-peer data storage network. Filecoin will allow users to trade storage space in an open and decentralized market.
Filecoin developers implemented one of the largest cryptocurrency sales in 2017. They have privately obtained over $ 200 million from professional or accredited investors, including many institutional investors.
The main network was slated to launch last month, but in February 2020, the Philly Queen development team delayed the release of the main network between July 15 and July 17, 2020.
They claimed that the outbreak of the Coronavirus (COVID-19) in China was the main cause of the delay. The developers now say that they need more time to solve the problems found during a recent codecase audit.
The Filecoin team noted the following:
“We have drafted a number of protocol changes to ensure that building our major network launch is safe and economically sound.” The project developers will add them to two different implementations of Filecoin (Lotus and go-filecoin) in the coming weeks.
Filecoin developers conducted a survey to allow platform community members to cast their votes on three different launch dates for Testnet Phase 2 and mainnet.
The team reported that the community gave their votes. Based on the vote results, the Filecoin team announced a “conservative” estimate that the second phase of the network test should begin by May 11, 2020. The main Filecoin network may be launched sometime between July 20 and August 21, 2020.
The updates to the project can be found on the Filecoin Road Map.
Filecoin developers stated:
“This option will make us get the most important protocol changes first, and then implement the rest as protocol updates during testnet.” Filecoin is back down from the final test stage.
Another filecoin decentralized storage network provider launched its catalytic test network, the final stage of the storage network test that supports the blockchain.
In a blog post on her website, Filecoin said she will postpone the last test round until August. The company also announced a calibration period from July 20 to August 3 to allow miners to test their mining settings and get an idea of how competition conditions affected their rewards.
Filecoin had announced earlier last month that the catalytic testnet test would precede its flagship launch. The delay in the final test also means that the company has returned the main launch window between August 31 and September 21.
Despite the lack of clear incentives for miners and multiple delays, Filecoin has succeeded in attracting huge interest, especially in China. Investors remained highly speculating on the network’s mining hardware and its premium price.
Mining in Filecoin
In most blockchain protocols, “miners” are network participants who do the work necessary to promote and maintain the blockchain. To provide these services, miners are compensated in the original cryptocurrency.
Mining in Filecoin works completely differently — instead of contributing to computational power, miners contribute storage capacity to use for dealing with customers looking to store data.
Filecoin will contain several types of miners:
Storage miners responsible for storing files and data on the network. Miners retrieval, responsible for providing quick tubes for file recovery. Miners repair to be carried out.
Storage miners are the heart of the network. They earn Filecoin by storing data for clients, and computerizing cipher directories to check storage over time. The probability of earning the reward reward and transaction fees is proportional to the amount of storage that the Miner contributes to the Filecoin network, not the hash power.
Retriever miners are the veins of the network. They earn Filecoin by winning bids and mining fees for a specific file, which is determined by the market value of the said file size. Miners bandwidth and recovery / initial transaction response time will determine its ability to close recovery deals on the network.
The maximum bandwidth of the recovery miners will determine the total amount of deals that it can enter into.
In the current implementation, the focus is mostly on storage miners, who sell storage capacity for FIL.

Hardware recommendations

The current system specifications recommended for running the miner are:
Compared to the hardware requirements for running a validity checker, these standards are much higher — although they definitely deserve it. Since these will not increase in the presumed future, the money spent on Filecoin mining hardware will provide users with many years of reliable service, and they pay themselves many times. Think of investing as a small business for cloud storage. To launch a model on the current data hosting model, it will cost millions of dollars in infrastructure and logistics to get started. With Filecoin, you can do the same for a few thousand dollars.
Proceed to mining
Deals are the primary function of the Filecoin network, and it represents an agreement between a client and miners for a “storage” contract.
Once the customer decides to have a miner to store based on the available capacity, duration and price required, he secures sufficient funds in a linked portfolio to cover the total cost of the deal. The deal is then published once the mine accepts the storage agreement. By default, all Filecoin miners are set to automatically accept any deal that meets their criteria, although this can be disabled for miners who prefer to organize their deals manually.
After the deal is published, the customer prepares the data for storage and then transfers it to the miner. Upon receiving all the data, the miner fills in the data in a sector, closes it, and begins to provide proofs to the chain. Once the first confirmation is obtained, the customer can make sure the data is stored correctly, and the deal has officially started.
Throughout the deal, the miner provides continuous proofs to the chain. Clients gradually pay with money they previously closed. If there is missing or late evidence, the miner is punished. More information about this can be found in the Runtime, Cut and Penalties section of this page.
At Filecoin, miners earn two different types of rewards for their efforts: storage fees and reward prevention.
Storage fees are the fees that customers pay regularly after reaching a deal, in exchange for storing data. This fee is automatically deposited into the withdrawal portfolio associated with miners while they continue to perform their duties over time, and is locked for a short period upon receipt.
Block rewards are large sums given to miners calculated on a new block. Unlike storage fees, these rewards do not come from a linked customer; Instead, the new FIL “prints” the network as an inflationary and incentive measure for miners to develop the chain. All active miners on the network have a chance to get a block bonus, their chance to be directly proportional to the amount of storage space that is currently being contributed to the network.
Duration of operation, cutting and penalties
“Slashing” is a feature found in most blockchain protocols, and is used to punish miners who fail to provide reliable uptime or act maliciously against the network.
In Filecoin, miners are susceptible to two different types of cut: storage error cut, unanimously reduce error.
Storage Error Reduction is a term used to include a wider range of penalties, including error fees, sector penalties, and termination fees. Miners must pay these penalties if they fail to provide reliability of the sector or decide to leave the network voluntarily.
An error fee is a penalty that a miner incurs for each non-working day. Sector punishment: A penalty incurred by a miner of a disrupted sector for which no error was reported before the WindowPoSt inspection.
The sector will pay an error fee after the penalty of the sector once the error is discovered.
Termination Fee: A penalty that a miner incurs when a sector is voluntary or involuntarily terminated and removed from the network.
Cutting consensus error is the penalty that a miner incurs for committing consensus errors. This punishment applies to miners who have acted maliciously against the network consensus function.
Filecoin miners
Eight of the top 10 Felticoin miners are Chinese investors or companies, according to the blockchain explorer, while more companies are selling cloud mining contracts and distributed file sharing system hardware. CoinDesk’s Wolfe Chao wrote: “China’s craze for Filecoin may have been largely related to the long-standing popularity of crypto mining in the country overall, which is home to about 65% of the computing power on Bitcoin at discretion.”
With Filecoin approaching the launch of the mainnet blocknet — after several delays since the $ 200 million increase in 2017 — Chinese investors are once again speculating strongly about network mining devices and their premium prices.
Since Protocol Labs, the company behind Filecoin, released its “Test Incentives” program on June 9 that was scheduled to start in a week’s time, more than a dozen Chinese companies have started selling cloud mining contracts and hardware — despite important details such as economics Mining incentives on the main network are still endless.
Sales volumes to date for each of these companies can range from half a million to tens of millions of dollars, according to self-reported data on these platforms that CoinDesk has watched and interviews with several mining hardware manufacturers.
Filecoin’s goal is to build a distributed storage network with token rewards to spur storage hosting as a way to drive wider adoption. Protocol Labs launched a test network in December 2019. But the tokens mined in the testing environment so far are not representative of the true silicon coin that can be traded when the main network is turned on. Moreover, the mining incentive economics on testnet do not represent how final block rewards will be available on the main network.
However, data from Blockecoin’s blocknetin testnet explorers show that eight out of 10 miners with the most effective mining force on testnet are currently Chinese miners.
These eight miners have about 15 petabytes (PB) of effective storage mining power, accounting for more than 85% of the total test of 17.9 petable. For the context, 1 petabyte of hard disk storage = 1000 terabytes (terabytes) = 1 million gigabytes (GB).
Filecoin craze in China may be closely related to the long-standing popularity of crypt mining in the country overall, which is home to about 65% of the computing power on Bitcoin by estimation. In addition, there has been a lot of hype in China about foreign exchange mining since 2018, as companies promote all types of devices when the network is still in development.
“Encryption mining has always been popular in China,” said Andy Tien, co-founder of 1475, one of several mining hardware manufacturers in Philquin supported by prominent Chinese video indicators such as Fenbushi and Hashkey Capital.
“Even though the Velikoyen mining process is more technologically sophisticated, the idea of mining using hard drives instead of specialized machines like Bitcoin ASIC may be a lot easier for retailers to understand,” he said.
Meanwhile, according to Feixiaohao, a Chinese service comparable to CoinMarketCap, nearly 50 Chinese crypto exchanges are often somewhat unknown with some of the more well-known exchanges including Gate.io and Biki — have listed trading pairs for Filecoin currency contracts for USDT.
In bitcoin mining, at the current difficulty level, one segment per second (TH / s) fragmentation rate is expected to generate around 0.000008 BTC within 24 hours. The higher the number of TH / s, the greater the number of bitcoins it should be able to produce proportionately. But in Filecoin, the efficient mining force of miners depends on the amount of data stamped on the hard drive, not the total size of the hard drive.
To close data in the hard drive, the Filecoin miner still needs processing power, i.e. CPU or GPU as well as RAM. More powerful processors with improved software can confine data to the hard drive more quickly, so miners can combine more efficient mining energy faster on a given day.
As of this stage, there appears to be no transparent way at the network level for retail investors to see how much of the purchased hard disk drive was purchased which actually represents an effective mining force.
The U.S.-based Labs Protocol was behind Filecoin’s initial coin offer for 2017, which raised an astonishing $ 200 million.
This was in addition to a $ 50 million increase in private investment supported by notable venture capital projects including Sequoia, Anderson Horowitz and Union Square Ventures. CoinDk’s parent company, CoinDk, has also invested in Protocol Labs.
After rounds of delay, Protocol Protocols said in September 2019 that a testnet launch would be available around December 2019 and the main network would be rolled out in the first quarter of 2020.
The test started as promised, but the main network has been delayed again and is now expected to launch in August 2020. What is Filecoin mining process?
Filecoin mainly consists of three parts: the storage market (the chain), the blockecin Filecoin, and the search market (under the chain). Storage and research market in series and series respectively for security and efficiency. For users, the storage frequency is relatively low, and the security requirements are relatively high, so the storage process is placed on the chain. The retrieval frequency is much higher than the storage frequency when there is a certain amount of data. Given the performance problem in processing data on the chain, the retrieval process under the chain is performed. In order to solve the security issue of payment in the retrieval process, Filecoin adopts the micro-payment strategy. In simple terms, the process is to split the document into several copies, and every time the user gets a portion of the data, the corresponding fee is paid. Types of mines corresponding to Filecoin’s two major markets are miners and warehousers, among whom miners are primarily responsible for storing data and block packages, while miners are primarily responsible for data query. After the stable operation of the major Filecoin network in the future, the mining operator will be introduced, who is the main responsible for data maintenance.
In the initial release of Filecoin, the request matching mechanism was not implemented in the storage market and retrieval market, but the takeover mechanism was adopted. The three main parts of Filecoin correspond to three processes, namely the stored procedure, retrieval process, packaging and reward process. The following figure shows the simplified process and the income of the miners:
The Filecoin mining process is much more complicated, and the important factor in determining the previous mining profit is efficient storage. Effective storage is a key feature that distinguishes Filecoin from other decentralized storage projects. In Filecoin’s EC consensus, effective storage is similar to interest in PoS, which determines the likelihood that a miner will get the right to fill, that is, the proportion of miners effectively stored in the entire network is proportional to final mining revenue.
It is also possible to obtain higher effective storage under the same hardware conditions by improving the mining algorithm. However, the current increase in the number of benefits that can be achieved by improving the algorithm is still unknown.
It seeks to promote mining using Filecoin Discover
Filecoin announced Filecoin Discover — a step to encourage miners to join the Filecoin network. According to the company, Filecoin Discover is “an ever-growing catalog of numerous petabytes of public data covering literature, science, art, and history.” Miners interested in sharing can choose which data sets they want to store, and receive that data on a drive at a cost. In exchange for storing this verified data, miners will earn additional Filecoin above the regular block rewards for storing data. Includes the current catalog of open source data sets; ENCODE, 1000 Genomes, Project Gutenberg, Berkley Self-driving data, more projects, and datasets are added every day.
Ian Darrow, Head of Operations at Filecoin, commented on the announcement:
“Over 2.5 quintillion bytes of data are created every day. This data includes 294 billion emails, 500 million tweets and 64 billion messages on social media. But it is also climatology reports, disease tracking maps, connected vehicle coordinates and much more. It is extremely important that we maintain data that will serve as the backbone for future research and discovery”.
Miners who choose to participate in Filecoin Discover may receive hard drives pre-loaded with verified data, as well as setup and maintenance instructions, depending on the company. The Filecoin team will also host the Slack (fil-Discover-support) channel where miners can learn more.
Filecoin got its fair share of obstacles along the way. Last month Filecoin announced a further delay before its main network was officially launched — after years of raising funds.
In late July QEBR (OTC: QEBR) announced that it had ceded ownership of two subsidiaries in order to focus all of the company’s resources on building blockchain-based mining operations.
The QEBR technology team previously announced that it has proven its system as a Filecoin node valid with CPU, GPU, bandwidth and storage compatibility that meets all IPFS guidelines. The QEBR test system is connected to the main Filecoin blockchain and the already mined filecoin coin has already been tested.
“The disclosure of Sheen Boom and Jihye will allow our team to focus only on the upcoming global launch of Filecoin. QEBR branch, Shenzhen DZD Digital Technology Ltd. (“ DZD “), has a strong background in blockchain development, extraction Data, data acquisition, data processing, data technology research. We strongly believe Filecoin has the potential to be a leading blockchain-based cryptocurrency and will make every effort to make QEBR an important player when Mainecoin mainnet will be launched soon”.
IPFS and Filecoin
Filecoin and IPFS are complementary protocols for storing and sharing data in a decentralized network. While users are not required to use Filecoin and IPFS together, the two combined are working to resolve major failures in the current web infrastructure.
IPFS
It is an open source protocol that allows users to store and transmit verifiable data with each other. IPFS users insist on data on the network by installing it on their own device, to a third-party cloud service (known as Pinning Services), or through community-oriented systems where a group of individual IPFS users share resources to ensure the content stays live.
The lack of an integrated catalytic mechanism is the challenge Filecoin hopes to solve by allowing users to catalyze long-term distributed storage at competitive prices through the storage contract market, while maintaining the efficiency and flexibility that the IPFS network provides.
Using IPFS
In IPFS, the data is hosted by the required data installation nodes. For data to persist while the user node is offline, users must either rely on their other peers to install their data voluntarily or use a central install service to store data.
Peer-to-peer reliance caching data may be a good thing as one or multiple organizations share common files on an internal network, or where strong social contracts can be used to ensure continued hosting and preservation of content in the long run. Most users in an IPFS network use an installation service.
Using Filecoin
The last option is to install your data in a decentralized storage market, such as Filecoin. In Filecoin’s structure, customers make regular small payments to store data when a certain availability, while miners earn those payments by constantly checking the integrity of this data, storing it, and ensuring its quick recovery. This allows users to motivate Filecoin miners to ensure that their content will be live when it is needed, a distinct advantage of relying only on other network users as required using IPFS alone.
Filecoin, powered by IPFS
It is important to know that Filecoin is built on top of IPFS. Filecoin aims to be a very integrated and seamless storage market that takes advantage of the basic functions provided by IPFS, they are connected to each other, but can be implemented completely independently of each other. Users do not need to interact with Filecoin in order to use IPFS.
Some advantages of sharing Filecoin with IPFS:
Of all the decentralized storage projects, Filecoin is undoubtedly the most interested, and IPFS has been running stably for two years, fully demonstrating the strength of its core protocol.
Filecoin’s ability to obtain market share from traditional central storage depends on end-user experience and storage price. Currently, most Filecoin nodes are posted in the IDC room. Actual deployment and operation costs are not reduced compared to traditional central cloud storage, and the storage process is more complicated.
PoRep and PoSt, which has a large number of proofs of unknown operation, are required to cause the actual storage cost to be so, in the early days of the release of Filecoin. The actual cost of storing data may be higher than the cost of central cloud storage, but the initial storage node may reduce the storage price in order to obtain block rewards, which may result in the actual storage price lower than traditional central cloud storage.
In the long term, Filecoin still needs to take full advantage of its P2P storage, convert storage devices from specialization to civil use, and improve its algorithms to reduce storage costs without affecting user experience. The storage problem is an important problem to be solved in the blockchain field, so a large number of storage projects were presented at the 19th Web3 Summit. IPFS is an important part of Web3 visibility. Its development will affect the development of Web3 to some extent. Likewise, Web3 development somewhat determines the future of IPFS. Filecoin is an IPFS-based storage class project initiated by IPFS. There is no doubt that he is highly expected.
Resources :
  1. https://www.coindesk.com/filecoin-pushes-back-final-testing-phase-announces-calibration-period-for-miners
  2. https://docs.filecoin.io/mine/#types-of-miners https://www.nasdaq.com/articles/inside-the-craze-for-filecoin-crypto-mining-in-china-2020-07-12؟amp
  3. https://www.prnewswire.com/news-releases/qebr-streamlines-holdings-to-concentrate-on-filecoin-development-and-mining-301098731.html
  4. https://www.crowdfundinsider.com/2020/05/161200-filecoin-seeks-to-boost-mining-with-filecoin-discove
  5. https://zephyrnet.com/filecoin-seeks-to-boost-mining-with-filecoin-discove
  6. https://docs.filecoin.io/introduction/ipfs-and-filecoin/#filecoin-powered-by-ipfs
submitted by CoinEx_Institution to filecoin [link] [comments]

Bitcoin Hashrate Has Hit a New Record-High Again, Here's Why It's Optimistic

The total hash rate of the Bitcoin blockchain network has hit an all-time high, demonstrating an optimistic after the halving. Bitcoin’s third block reward halving in history occurred on May 11, 2020. Immediately after, its hash rate dropped from 121 million terahash per second (TH/s) to 90 million TH/S. The rapid recovery of Bitcoin’s hash rate shows that the mining sector is healthy, which could lead to market stability. A positive catalyst for Bitcoin in the medium-term Following a block reward halving, the hash rate of the Bitcoin network tends to drop substantially. The halving drops the amount of BTC miners can produce by half, causing their revenues to decline. When miners struggle with recurring expenses as a result of lower BTC production, they typically sell their BTC reserves. In the short-term, until a major difficulty adjustment occurs, the risk of miner capitulation or massive selling pressure is low. Alejandro De La Torre, the vice president of Poolin, explained that older machines have become profitable as well. That means even individual miners could be profitable and are likely less compelled to sell BTC. Torre explained: “Yesterday's two-week difficulty re-adjustment saw a decrease of - 2.87% & an average hash rate of 120.57 EH/s. What's interesting here is that the hashrate continues to increase, definitely related to the current #bitcoin price - older machines are profitable again.” Consequently, Torre said the hash rate of the Bitcoin network would likely continue to increase. The difficulty to mine BTC is lower than in previous weeks, and the price of BTC is above $11,000. He noted: “Difficulty is now lower than the last two weeks from 17.35T to 16.85T and the price is much higher so expect strong hashing for the next two weeks, all dependent of the price at the end of the day.” A record-high hash rate merely three months after the halving can be considered an optimistic trend. It shows that due to varying factors, which includes cheaper electricity in Sichuan, China, the mining industry is stable. Many large mining centers are based in Sichuan. Due to the rainy season and the presence of hydropower plants, lower-cost electricity is available for miners. Optimistic market cycle According to data from ByteTree, the net inventory of miners over the past five weeks is hovering at 30 BTC. The data shows that miners have not sold more than they mine, which leads to less selling pressure on BTC. Relatively low selling pressure from miners is a positive factor that could allow BTC to sustain its strong momentum. It also indicates that Bitcoin is on track to recover from the halving before the fourth quarter of this year, demonstrating the resilience of the sector. About the author Joseph Young Joseph Young is an analyst based in South Korea that has been covering finance, fintech, and cryptocurrency since 2013. He has worked with various recognized publications in both the finance and cryptocurrency industries.
submitted by crypto4l1fe to u/crypto4l1fe [link] [comments]

Why NYA is an attack on Bitcoin and why it will fail (long)

I wrote a rather lengthy response to a reddit post that I think is worth sharing, especially for newcomers to dispell some false narratives about S2X and Barry Silberts' New-York Agreement aka hostile takeover attempt of Bitcoin that is doomed to fail.
big block hard-liners wanted block size only, no SegWit.
Which doesn't make any logical sense. A lot of fud was actively being spread about how segwit was unsafe (such as the ANYONECANSPEND fud) but segwit is ofcourse working as intended thanks to the world class engineering of the Bitcoin Core developers. This led to the suspicion that BitMain was behind the opposition of segwit. BitMain miners use "covert AsicBoost" which is a technique that allows their rigs to use less electricity than competing mining equipment. However, segwit introduced changes to Bitcoin that made using covert AsicBoost impossible, which would explain their fierce opposition to segwit. We're talking big money here - the AsicBoost advantage is worth US$ 100 million according to estimates of experts.
After segwit was finalized, the Bitcoin software was programmed to activate segwit but not before 95% of the hashpower signalled to be ready. After all, miners are tasked with creating valid blocks and should be given the opportunity to update their software for protocol changes such as segwit. As a courtesy to the miners, the Bitcoin software basically said: "ok, segwit is here, but I'll politely hold off its activation until 95% of you say that you're ready to deal with this protocol change".
Sadly, mining is heavily centralized, and segwit was never getting activated due to the opposition of a few or perhaps even a single person: Jihan Wu of BitMain. As an aside, the centralization of hash power is also a direct result of AsicBoost. How this works: since AsicBoosted rigs are able to mine more efficiently than their competitors, these rigs drive up the difficulty and with that the average amount of hashes required to find a block. This in turn causes less efficient rigs to mine at a loss because they need to expend more energy to find a block. As a result, BitMain competitors got pushed out and BitMain became the dominant self-mining ASIC manufacturer.
After segwit was finalized, it required 95% of the hashpower to activate but it never gained more than around 30%. So 70% of hash power abused the courtesy of the Bitcoin software to wait until they were ready for activation and refused to give the go ahead. This went on for months and worst case it would have taken until August 2018 before segwit would activate.
let's do a compromise- we do SegWit AND we hard fork
In March 2017 a pseudonymous user called Shaolin Fry created BIP148 which is a softfork that invalidates any block that wouldn't signal segwit readiness starting August 1st 2017. This also became known as the UASF (User-Activated Soft Fork, as opposed to the original miner-activated soft fork that didn't work as intended). This patch saw significant adoption and miners would soon be forced to signal segwit or else see their blocks being invalidated by the network, which would cause them significant financial losses.
In May 2017 so after BIP148, the backroom New-York Agreement (NYA) was created by the Digital Currency Group of Barry Silbert together with businesses in the Bitcoin space such as BitPay and almost all miners. The NYA was the beginning of an outright misinformation campaign.
The NYA was trumpeted to be a "compromise". Miners would finally agree to activate segwit. In return, Bitcoin would hardfork and double its capacity on top of the doubling already achieved by segwit. In reality, BIP148 was already going to force miners to signal the activation of segwit. Also, developers and most users were notably absent in this NYA. So, given that segwit was already unstoppable because of BIP148, the parties around the table had to "compromise" to do something that they all wanted: hardfork Bitcoin to increase its capacity.
Or, is it all in fact really about increasing capacity? After all, segwit already achieved this. Bcash was created which doubled block size as well but without segwit. And then there is good old Litecoin having four times the transaction capacity of Bitcoin and segwit. Plenty of working alternatives that obsolete the need for yet another altcoin. So, perhaps transaction capacity is used as an excuse to reach a different goal. Let's explore.
Apparently after not-so-careful study of the Bitcoin whitepaper, the NYA participants came up with an absurd redefinition of what is "Bitcoin". According to this bizarre definition, they started to claim that Bitcoin is being defined as:
  1. Any blockchain that has the most cumulative hashpower behind it (measured from the Genesis block at the inception of Bitcoin):
  2. Using the SHA256 hashing algorithm;
  3. Having the current difficulty adjustment algorithm (resetting difficulty every 2016 blocks).
Ad 1. Note that it starts with "any blockchain". This also includes blockchains that contain invalid blocks, in other words, blocks that Bitcoin nodes would reject.
This is ofcourse bizarre but it is exactly what the NYA participants claim. It effectively puts all power in the hand of miners. Instead of nodes validating blocks, according to this novel and absurd interpretation of Bitcoin it will be miners that call the shots. Whatever block a miner produces will be valid as long as they mine on top of their own block, because that chain will then have the most cumulative hash power. Nodes become mere distributors of blocks and lose all their authority as they can no longer decide over the validity of a block. MinerCoin is born.
The Bitcoin whitepaper actually mentions this scenario where a majority of the hashpower takes over the network and starts producing invalid blocks and refers to it as being an attack. It is worth quoting this section 8, second paragraph in its entirety:
"As such, the verification is reliable as long as honest nodes control the network, but is more vulnerable if the network is overpowered by an attacker. While network nodes can verify transactions for themselves, the simplified method can be fooled by an attacker's fabricated transactions for as long as the attacker can continue to overpower the network. One strategy to protect against this would be to accept alerts from network nodes when they detect an invalid block, prompting the user's software to download the full block and alerted transactions to confirm the inconsistency. Businesses that receive frequent payments will probably still want to run their own nodes for more independent security and quicker verification." (emphasises mine).
Any doubt left whether "most hashpower wins" is an attack should be removed by a telling remark in the release notes of 0.3.19:
"Safe mode can still be triggered by seeing a longer (greater total PoW) invalid block chain."
As mentioned, miners representing 95% of all hash power participate in the NYA. They are currently expressing their support for the NYA by putting "NYA" inside blocks. The NYA participants intend to remove their hash power from Bitcoin completely and point it towards their altcoin. To double down on their claim that Bitcoin is defined by hashpower, they show some serious audacity by referring to their altcoin as... "Bitcoin". Anyone not part of the NYA refers to their coin as segwit2x, S2X or sometimes 2x.
The NYA participants proceed to proclaim victory. They reason that with all hash power on their blockchain and hardly any left for Bitcoin, "legacy Bitcoin" will be stuck as blocks will be created so slowly that Bitcoin becomes unusable, forcing everyone to switch to the "real" Bitcoin (sic). In other words, it was part of the plan was to remove hash power from Bitcoin to disrupt and force users into their altcoin.
Ofcourse, Bitcoin Core would not just sit idle and let such an attack happen. There are several ways to defend against this attack. As a last resort, an emergency difficulty reset combined with a change in the PoW algorithm can be deployed to get Bitcoin going again.
This is not likely to be necessary however as miners simply can't afford to mine a coin that has a small fraction of the value of Bitcoin. They have large bills to pay which is impossible by mining a coin that has half or even less the value of Bitcoin. In other words, miners would bankrupt themselves unless their altcoin attains the same value as Bitcoin. Given the lack of user, community and developer support it is save to say that this is not going to happen. Their coin will have only a small fraction of the value of Bitcoin and miners have no choice but to continue mine Bitcoin in order to receive the income necessary to pay for their huge operational expenses.
A moment was set for the hardfork: block 494,784 a big block will be produced such that it is invalid for the current Bitcoin network and will discard it.
Ofcourse, some nodes must accept the new, bigger S2X blocks. Therefore, Jeff Garzik (co-founder of a company called Bloq) started out to create btc1 which is a fork of the Bitcoin node software and which is adapted such that it accepts blocks up to twice in size, so that the segwit2x altcoin can exist. Note the 1 in btc1 which refers to their version numbering. Bitcoin Core releases are still 0.x but btc1 is numbered 1.x. This is to send the message that they have released the real Bitcoin that is now no longer a beta 0.x release but a production ready 1.x. This nonwithstanding the fact that btc1 is a copy of Bitcoin 0.14 with some minor changes and without any significant development causing it to quickly fall behind Bitcoin.
The NYA participants go on to claim that when hash power is on the btc1 blockchain, and Bitcoin is dead as a result because no or hardly any new blocks are being created, then the Bitcoin Core developers have no choice but to start contributing to their btc1 github controlled by Jeff Garzik.
In the NYA end state, Bitcoin is a coin of which miners set the consensus rules, and the Core developers sheepishly contribute to software in a repository controlled by Jeff Garzik or whoever pays him.
Needless to say, this is never ever going to happen.
The small block hard-liners are now against 2x and want SegWit only.
There is no such thing as small block hardliners. As is probably clear by now, NYA is not about block size. It is about control over Bitcoin. As a matter of fact, Bitcoin Core has never closed the door on a block size increase. In the scaling roadmap published in December 2015, Bitcoin Core notes:
"Finally--at some point the capacity increases from the above may not be enough. Delivery on relay improvements, segwit fraud proofs, dynamic block size controls, and other advances in technology will reduce the risk and therefore controversy around moderate block size increase proposals (such as 2/4/8 rescaled to respect segwit's increase). Bitcoin will be able to move forward with these increases when improvements and understanding render their risks widely acceptable relative to the risks of not deploying them. In Bitcoin Core we should keep patches ready to implement them as the need and the will arises, to keep the basic software engineering from being the limiting factor."
Bitcoin Core literally says here very clearly that further increases of block size are on the table as an option in the future.
For my personal opinion-
I hope that your personal opinion has changed after taking notes of the above.
submitted by trilli0nn to Bitcoin [link] [comments]

Where is Bitcoin Going and When?

Where is Bitcoin Going and When?

The Federal Reserve and the United States government are pumping extreme amounts of money into the economy, already totaling over $484 billion. They are doing so because it already had a goal to inflate the United States Dollar (USD) so that the market can continue to all-time highs. It has always had this goal. They do not care how much inflation goes up by now as we are going into a depression with the potential to totally crash the US economy forever. They believe the only way to save the market from going to zero or negative values is to inflate it so much that it cannot possibly crash that low. Even if the market does not dip that low, inflation serves the interest of powerful people.
The impending crash of the stock market has ramifications for Bitcoin, as, though there is no direct ongoing-correlation between the two, major movements in traditional markets will necessarily affect Bitcoin. According to the Blockchain Center’s Cryptocurrency Correlation Tool, Bitcoin is not correlated with the stock market. However, when major market movements occur, they send ripples throughout the financial ecosystem which necessary affect even ordinarily uncorrelated assets.
Therefore, Bitcoin will reach X price on X date after crashing to a price of X by X date.

Stock Market Crash

The Federal Reserve has caused some serious consternation with their release of ridiculous amounts of money in an attempt to buoy the economy. At face value, it does not seem to have any rationale or logic behind it other than keeping the economy afloat long enough for individuals to profit financially and politically. However, there is an underlying basis to what is going on which is important to understand in order to profit financially.
All markets are functionally price probing systems. They constantly undergo a price-discovery process. In a fiat system, money is an illusory and a fundamentally synthetic instrument with no intrinsic value – similar to Bitcoin. The primary difference between Bitcoin is the underlying technology which provides a slew of benefits that fiat does not. Fiat, however, has an advantage in being able to have the support of powerful nation-states which can use their might to insure the currency’s prosperity.
Traditional stock markets are composed of indices (pl. of index). Indices are non-trading market instruments which are essentially summaries of business values which comprise them. They are continuously recalculated throughout a trading day, and sometimes reflected through tradable instruments such as Exchange Traded Funds or Futures. Indices are weighted by market capitalizations of various businesses.
Price theory essentially states that when a market fails to take out a new low in a given range, it will have an objective to take out the high. When a market fails to take out a new high, it has an objective to make a new low. This is why price-time charts go up and down, as it does this on a second-by-second, minute-by-minute, day-by-day, and even century-by-century basis. Therefore, market indices will always return to some type of bull market as, once a true low is formed, the market will have a price objective to take out a new high outside of its’ given range – which is an all-time high. Instruments can only functionally fall to zero, whereas they can grow infinitely.
So, why inflate the economy so much?
Deflation is disastrous for central banks and markets as it raises the possibility of producing an overall price objective of zero or negative values. Therefore, under a fractional reserve system with a fiat currency managed by a central bank – the goal of the central bank is to depreciate the currency. The dollar is manipulated constantly with the intention of depreciating its’ value.
Central banks have a goal of continued inflated fiat values. They tend to ordinarily contain it at less than ten percent (10%) per annum in order for the psyche of the general populace to slowly adjust price increases. As such, the markets are divorced from any other logic. Economic policy is the maintenance of human egos, not catering to fundamental analysis. Gross Domestic Product (GDP) growth is well-known not to be a measure of actual growth or output. It is a measure of increase in dollars processed. Banks seek to produce raising numbers which make society feel like it is growing economically, making people optimistic. To do so, the currency is inflated, though inflation itself does not actually increase growth. When society is optimistic, it spends and engages in business – resulting in actual growth. It also encourages people to take on credit and debts, creating more fictional fiat.
Inflation is necessary for markets to continue to reach new heights, generating positive emotional responses from the populace, encouraging spending, encouraging debt intake, further inflating the currency, and increasing the sale of government bonds. The fiat system only survives by generating more imaginary money on a regular basis.
Bitcoin investors may profit from this by realizing that stock investors as a whole always stand to profit from the market so long as it is managed by a central bank and does not collapse entirely. If those elements are filled, it has an unending price objective to raise to new heights. It also allows us to realize that this response indicates that the higher-ups believe that the economy could crash in entirety, and it may be wise for investors to have multiple well-thought-out exit strategies.

Economic Analysis of Bitcoin

The reason why the Fed is so aggressively inflating the economy is due to fears that it will collapse forever or never rebound. As such, coupled with a global depression, a huge demand will appear for a reserve currency which is fundamentally different than the previous system. Bitcoin, though a currency or asset, is also a market. It also undergoes a constant price-probing process. Unlike traditional markets, Bitcoin has the exact opposite goal. Bitcoin seeks to appreciate in value and not depreciate. This has a quite different affect in that Bitcoin could potentially become worthless and have a price objective of zero.
Bitcoin was created in 2008 by a now famous mysterious figure known as Satoshi Nakamoto and its’ open source code was released in 2009. It was the first decentralized cryptocurrency to utilize a novel protocol known as the blockchain. Up to one megabyte of data may be sent with each transaction. It is decentralized, anonymous, transparent, easy to set-up, and provides myriad other benefits. Bitcoin is not backed up by anything other than its’ own technology.
Bitcoin is can never be expected to collapse as a framework, even were it to become worthless. The stock market has the potential to collapse in entirety, whereas, as long as the internet exists, Bitcoin will be a functional system with a self-authenticating framework. That capacity to persist regardless of the actual price of Bitcoin and the deflationary nature of Bitcoin means that it has something which fiat does not – inherent value.
Bitcoin is based on a distributed database known as the “blockchain.” Blockchains are essentially decentralized virtual ledger books, replete with pages known as “blocks.” Each page in a ledger is composed of paragraph entries, which are the actual transactions in the block.
Blockchains store information in the form of numerical transactions, which are just numbers. We can consider these numbers digital assets, such as Bitcoin. The data in a blockchain is immutable and recorded only by consensus-based algorithms. Bitcoin is cryptographic and all transactions are direct, without intermediary, peer-to-peer.
Bitcoin does not require trust in a central bank. It requires trust on the technology behind it, which is open-source and may be evaluated by anyone at any time. Furthermore, it is impossible to manipulate as doing so would require all of the nodes in the network to be hacked at once – unlike the stock market which is manipulated by the government and “Market Makers”. Bitcoin is also private in that, though the ledge is openly distributed, it is encrypted. Bitcoin’s blockchain has one of the greatest redundancy and information disaster recovery systems ever developed.
Bitcoin has a distributed governance model in that it is controlled by its’ users. There is no need to trust a payment processor or bank, or even to pay fees to such entities. There are also no third-party fees for transaction processing. As the ledge is immutable and transparent it is never possible to change it – the data on the blockchain is permanent. The system is not easily susceptible to attacks as it is widely distributed. Furthermore, as users of Bitcoin have their private keys assigned to their transactions, they are virtually impossible to fake. No lengthy verification, reconciliation, nor clearing process exists with Bitcoin.
Bitcoin is based on a proof-of-work algorithm. Every transaction on the network has an associated mathetical “puzzle”. Computers known as miners compete to solve the complex cryptographic hash algorithm that comprises that puzzle. The solution is proof that the miner engaged in sufficient work. The puzzle is known as a nonce, a number used only once. There is only one major nonce at a time and it issues 12.5 Bitcoin. Once it is solved, the fact that the nonce has been solved is made public.
A block is mined on average of once every ten minutes. However, the blockchain checks every 2,016,000 minutes (approximately four years) if 201,600 blocks were mined. If it was faster, it increases difficulty by half, thereby deflating Bitcoin. If it was slower, it decreases, thereby inflating Bitcoin. It will continue to do this until zero Bitcoin are issued, projected at the year 2140. On the twelfth of May, 2020, the blockchain will halve the amount of Bitcoin issued when each nonce is guessed. When Bitcoin was first created, fifty were issued per block as a reward to miners. 6.25 BTC will be issued from that point on once each nonce is solved.
Unlike fiat, Bitcoin is a deflationary currency. As BTC becomes scarcer, demand for it will increase, also raising the price. In this, BTC is similar to gold. It is predictable in its’ output, unlike the USD, as it is based on a programmed supply. We can predict BTC’s deflation and inflation almost exactly, if not exactly. Only 21 million BTC will ever be produced, unless the entire network concedes to change the protocol – which is highly unlikely.
Some of the drawbacks to BTC include congestion. At peak congestion, it may take an entire day to process a Bitcoin transaction as only three to five transactions may be processed per second. Receiving priority on a payment may cost up to the equivalent of twenty dollars ($20). Bitcoin mining consumes enough energy in one day to power a single-family home for an entire week.

Trading or Investing?

The fundamental divide in trading revolves around the question of market structure. Many feel that the market operates totally randomly and its’ behavior cannot be predicted. For the purposes of this article, we will assume that the market has a structure, but that that structure is not perfect. That market structure naturally generates chart patterns as the market records prices in time. In order to determine when the stock market will crash, causing a major decline in BTC price, we will analyze an instrument, an exchange traded fund, which represents an index, as opposed to a particular stock. The price patterns of the various stocks in an index are effectively smoothed out. In doing so, a more technical picture arises. Perhaps the most popular of these is the SPDR S&P Standard and Poor 500 Exchange Traded Fund ($SPY).
In trading, little to no concern is given about value of underlying asset. We are concerned primarily about liquidity and trading ranges, which are the amount of value fluctuating on a short-term basis, as measured by volatility-implied trading ranges. Fundamental analysis plays a role, however markets often do not react to real-world factors in a logical fashion. Therefore, fundamental analysis is more appropriate for long-term investing.
The fundamental derivatives of a chart are time (x-axis) and price (y-axis). The primary technical indicator is price, as everything else is lagging in the past. Price represents current asking price and incorrectly implementing positions based on price is one of the biggest trading errors.
Markets and currencies ordinarily have noise, their tendency to back-and-fill, which must be filtered out for true pattern recognition. That noise does have a utility, however, in allowing traders second chances to enter favorable positions at slightly less favorable entry points. When you have any market with enough liquidity for historical data to record a pattern, then a structure can be divined. The market probes prices as part of an ongoing price-discovery process. Market technicians must sometimes look outside of the technical realm and use visual inspection to ascertain the relevance of certain patterns, using a qualitative eye that recognizes the underlying quantitative nature
Markets and instruments rise slower than they correct, however they rise much more than they fall. In the same vein, instruments can only fall to having no worth, whereas they could theoretically grow infinitely and have continued to grow over time. Money in a fiat system is illusory. It is a fundamentally synthetic instrument which has no intrinsic value. Hence, the recent seemingly illogical fluctuations in the market.
According to trade theory, the unending purpose of a market or instrument is to create and break price ranges according to the laws of supply and demand. We must determine when to trade based on each market inflection point as defined in price and in time as opposed to abandoning the trend (as the contrarian trading in this sub often does). Time and Price symmetry must be used to be in accordance with the trend. When coupled with a favorable risk to reward ratio, the ability to stay in the market for most of the defined time period, and adherence to risk management rules; the trader has a solid methodology for achieving considerable gains.
We will engage in a longer term market-oriented analysis to avoid any time-focused pressure. The Bitcoin market is open twenty-four-hours a day, so trading may be done when the individual is ready, without any pressing need to be constantly alert. Let alone, we can safely project months in advance with relatively high accuracy. Bitcoin is an asset which an individual can both trade and invest, however this article will be focused on trading due to the wide volatility in BTC prices over the short-term.

Technical Indicator Analysis of Bitcoin

Technical indicators are often considered self-fulfilling prophecies due to mass-market psychology gravitating towards certain common numbers yielded from them. They are also often discounted when it comes to BTC. That means a trader must be especially aware of these numbers as they can prognosticate market movements. Often, they are meaningless in the larger picture of things.
  • Volume – derived from the market itself, it is mostly irrelevant. The major problem with volume for stocks is that the US market open causes tremendous volume surges eradicating any intrinsic volume analysis. This does not occur with BTC, as it is open twenty-four-seven. At major highs and lows, the market is typically anemic. Most traders are not active at terminal discretes (peaks and troughs) because of levels of fear. Volume allows us confidence in time and price symmetry market inflection points, if we observe low volume at a foretold range of values. We can rationalize that an absolute discrete is usually only discovered and anticipated by very few traders. As the general market realizes it, a herd mentality will push the market in the direction favorable to defending it. Volume is also useful for swing trading, as chances for swing’s validity increases if an increase in volume is seen on and after the swing’s activation. Volume is steadily decreasing. Lows and highs are reached when volume is lower.
Therefore, due to the relatively high volume on the 12th of March, we can safely determine that a low for BTC was not reached.
  • VIX – Volatility Index, this technical indicator indicates level of fear by the amount of options-based “insurance” in portfolios. A low VIX environment, less than 20 for the S&P index, indicates a stable market with a possible uptrend. A high VIX, over 20, indicates a possible downtrend. VIX is essentially useless for BTC as BTC-based options do not exist. It allows us to predict the market low for $SPY, which will have an indirect impact on BTC in the short term, likely leading to the yearly low. However, it is equally important to see how VIX is changing over time, if it is decreasing or increasing, as that indicates increasing or decreasing fear. Low volatility allows high leverage without risk or rest. Occasionally, markets do rise with high VIX.
As VIX is unusually high, in the forties, we can be confident that a downtrend for the S&P 500 is imminent.
  • RSI (Relative Strength Index): The most important technical indicator, useful for determining highs and lows when time symmetry is not availing itself. Sometimes analysis of RSI can conflict in different time frames, easiest way to use it is when it is at extremes – either under 30 or over 70. Extremes can be used for filtering highs or lows based on time-and-price window calculations. Highly instructive as to major corrective clues and indicative of continued directional movement. Must determine if longer-term RSI values find support at same values as before. It is currently at 73.56.
  • Secondly, RSI may be used as a high or low filter, to observe the level that short-term RSI reaches in counter-trend corrections. Repetitions based on market movements based on RSI determine how long a trade should be held onto. Once a short term RSI reaches an extreme and stay there, the other RSI’s should gradually reach the same extremes. Once all RSI’s are at extreme highs, a trend confirmation should occur and RSI’s should drop to their midpoint.

Trend Definition Analysis of Bitcoin

Trend definition is highly powerful, cannot be understated. Knowledge of trend logic is enough to be a profitable trader, yet defining a trend is an arduous process. Multiple trends coexist across multiple time frames and across multiple market sectors. Like time structure, it makes the underlying price of the instrument irrelevant. Trend definitions cannot determine the validity of newly formed discretes. Trend becomes apparent when trades based in counter-trend inflection points continue to fail.
Downtrends are defined as an instrument making lower lows and lower highs that are recurrent, additive, qualified swing setups. Downtrends for all instruments are similar, except forex. They are fast and complete much quicker than uptrends. An average downtrend is 18 months, something which we will return to. An uptrend inception occurs when an instrument reaches a point where it fails to make a new low, then that low will be tested. After that, the instrument will either have a deep range retracement or it may take out the low slightly, resulting in a double-bottom. A swing must eventually form.
A simple way to roughly determine trend is to attempt to draw a line from three tops going upwards (uptrend) or a line from three bottoms going downwards (downtrend). It is not possible to correctly draw a downtrend line on the BTC chart, but it is possible to correctly draw an uptrend – indicating that the overall trend is downwards. The only mitigating factor is the impending stock market crash.

Time Symmetry Analysis of Bitcoin

Time is the movement from the past through the present into the future. It is a measurement in quantified intervals. In many ways, our perception of it is a human construct. It is more powerful than price as time may be utilized for a trade regardless of the market inflection point’s price. Were it possible to perfectly understand time, price would be totally irrelevant due to the predictive certainty time affords. Time structure is easier to learn than price, but much more difficult to apply with any accuracy. It is the hardest aspect of trading to learn, but also the most rewarding.
Humans do not have the ability to recognize every time window, however the ability to define market inflection points in terms of time is the single most powerful trading edge. Regardless, price should not be abandoned for time alone. Time structure analysis It is inherently flawed, as such the markets have a fail-safe, which is Price Structure. Even though Time is much more powerful, Price Structure should never be completely ignored. Time is the qualifier for Price and vice versa. Time can fail by tricking traders into counter-trend trading.
Time is a predestined trade quantifier, a filter to slow trades down, as it allows a trader to specifically focus on specific time windows and rest at others. It allows for quantitative measurements to reach deterministic values and is the primary qualifier for trends. Time structure should be utilized before price structure, and it is the primary trade criterion which requires support from price. We can see price structure on a chart, as areas of mathematical support or resistance, but we cannot see time structure.
Time may be used to tell us an exact point in the future where the market will inflect, after Price Theory has been fulfilled. In the present, price objectives based on price theory added to possible future times for market inflection points give us the exact time of market inflection points and price.
Time Structure is repetitions of time or inherent cycles of time, occurring in a methodical way to provide time windows which may be utilized for inflection points. They are not easily recognized and not easily defined by a price chart as measuring and observing time is very exact. Time structure is not a science, yet it does require precise measurements. Nothing is certain or definite. The critical question must be if a particular approach to time structure is currently lucrative or not.
We will measure it in intervals of 180 bars. Our goal is to determine time windows, when the market will react and when we should pay the most attention. By using time repetitions, the fact that market inflection points occurred at some point in the past and should, therefore, reoccur at some point in the future, we should obtain confidence as to when SPY will reach a market inflection point. Time repetitions are essentially the market’s memory. However, simply measuring the time between two points then trying to extrapolate into the future does not work. Measuring time is not the same as defining time repetitions. We will evaluate past sessions for market inflection points, whether discretes, qualified swings, or intra-range. Then records the times that the market has made highs or lows in a comparable time period to the future one seeks to trade in.
What follows is a time Histogram – A grouping of times which appear close together, then segregated based on that closeness. Time is aligned into combined histogram of repetitions and cycles, however cycles are irrelevant on a daily basis. If trading on an hourly basis, do not use hours.
  • Yearly Lows (last seven years): 1/1/13, 4/10/14, 1/15/15, 1/17/16, 1/1/17, 12/15/18, 2/6/19
  • Monthly Mode: 1, 1, 1, 1, 2, 4, 12
  • Daily Mode: 1, 1, 6, 10, 15, 15, 17
  • Monthly Lows (for the last year): 3/12/20 (10:00pm), 2/28/20 (7:09am), 1/2/20 (8:09pm), 12/18/19 (8:00am), 11/25/19 (1:00am), 10/24/19 (2:59am), 9/30/19 (2:59am), 8/29,19 (4:00am), 7/17/19 (7:59am), 6/4/19 (5:59pm), 5/1/19 (12:00am), 4/1/19 (12:00am)
  • Daily Lows Mode for those Months: 1, 1, 2, 4, 12, 17, 18, 24, 25, 28, 29, 30
  • Hourly Lows Mode for those Months (Military time): 0100, 0200, 0200, 0400, 0700, 0700, 0800, 1200, 1200, 1700, 2000, 2200
  • Minute Lows Mode for those Months: 00, 00, 00, 00, 00, 00, 09, 09, 59, 59, 59, 59
  • Day of the Week Lows (last twenty-six weeks):
Weighted Times are repetitions which appears multiple times within the same list, observed and accentuated once divided into relevant sections of the histogram. They are important in the presently defined trading time period and are similar to a mathematical mode with respect to a series. Phased times are essentially periodical patterns in histograms, though they do not guarantee inflection points
Evaluating the yearly lows, we see that BTC tends to have its lows primarily at the beginning of every year, with a possibility of it being at the end of the year. Following the same methodology, we get the middle of the month as the likeliest day. However, evaluating the monthly lows for the past year, the beginning and end of the month are more likely for lows.
Therefore, we have two primary dates from our histogram.
1/1/21, 1/15/21, and 1/29/21
2:00am, 8:00am, 12:00pm, or 10:00pm
In fact, the high for this year was February the 14th, only thirty days off from our histogram calculations.
The 8.6-Year Armstrong-Princeton Global Economic Confidence model states that 2.15 year intervals occur between corrections, relevant highs and lows. 2.15 years from the all-time peak discrete is February 9, 2020 – a reasonably accurate depiction of the low for this year (which was on 3/12/20). (Taking only the Armstrong model into account, the next high should be Saturday, April 23, 2022). Therefore, the Armstrong model indicates that we have actually bottomed out for the year!
Bear markets cannot exist in perpetuity whereas bull markets can. Bear markets will eventually have price objectives of zero, whereas bull markets can increase to infinity. It can occur for individual market instruments, but not markets as a whole. Since bull markets are defined by low volatility, they also last longer. Once a bull market is indicated, the trader can remain in a long position until a new high is reached, then switch to shorts. The average bear market is eighteen months long, giving us a date of August 19th, 2021 for the end of this bear market – roughly speaking. They cannot be shorter than fifteen months for a central-bank controlled market, which does not apply to Bitcoin. (Otherwise, it would continue until Sunday, September 12, 2021.) However, we should expect Bitcoin to experience its’ exponential growth after the stock market re-enters a bull market.
Terry Laundy’s T-Theory implemented by measuring the time of an indicator from peak to trough, then using that to define a future time window. It is similar to an head-and-shoulders pattern in that it is the process of forming the right side from a synthetic technical indicator. If the indicator is making continued lows, then time is recalculated for defining the right side of the T. The date of the market inflection point may be a price or indicator inflection date, so it is not always exactly useful. It is better to make us aware of possible market inflection points, clustered with other data. It gives us an RSI low of May, 9th 2020.
The Bradley Cycle is coupled with volatility allows start dates for campaigns or put options as insurance in portfolios for stocks. However, it is also useful for predicting market moves instead of terminal dates for discretes. Using dates which correspond to discretes, we can see how those dates correspond with changes in VIX.
Therefore, our timeline looks like:
  • 2/14/20 – yearly high ($10372 USD)
  • 3/12/20 – yearly low thus far ($3858 USD)
  • 5/9/20 – T-Theory true yearly low (BTC between 4863 and 3569)
  • 5/26/20 – hashrate difficulty halvening
  • 11/14/20 – stock market low
  • 1/15/21 – yearly low for BTC, around $8528
  • 8/19/21 – end of stock bear market
  • 11/26/21 – eighteen months from halvening, average peak from halvenings (BTC begins rising from $3000 area to above $23,312)
  • 4/23/22 – all-time high
Taken from my blog: http://aliamin.info/2020/
submitted by aibnsamin1 to Bitcoin [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Cryptocurrency Mining Difficulty Explained - Mining Difficulty And Analysis CryptoCurrency Mining Difficulty Log Jan 21 2020 Hash Rates of Difficulty Nonce – Definition, Meaning, Review, Description, Example, Proof-Of-Work Bitcoin How to Calculate Bitcoin Difficulty Bitcoin mining difficulty example. THIS IS CRAZY!!

Fazit zum Mining von Bitcoin. Wenn Sie am Mining von Bitcoin interessiert sind, kann das auf lange Sicht eine sich lohnende Entscheidung sein. Sie haben die Wahl zwischen Mining mit eigener Hardware oder im Pool oder durch Cloud-Mining.Beide haben ihre Vor- und Nachteile gegenüber den Bitcoin Kauf.Grundsätzlich profitieren Sie als Miner von steigenden und stagnierenden Kursen und damit ... Bitcoin is programmed to mine a block about every 10 minutes. It maintains this rate of production by adjusting the “mining difficulty” in line with the overall hashrate of the network. In short, it becomes more difficult for miners to find the target. As hashrate increases, so does Bitcoin’s mining difficulty. Share Difficulty and Mining Difficulty. Share and block solution are different things. Share difficulty doesn’t affect the number of blocks found by a pool. Share difficulty doesn’t affect miner rewards. Shares are used by miners to monitor their rigs and by pools to distribute rewards amongst their miners. If there is only one miner on the pool, then you can set share difficulty equal to ... where difficulty is the current difficulty, hashrate is the number of hashes your miner calculates per second, and time is the average in seconds between the blocks you find. For example, using Python we calculate the average time to generate a block using a 1Ghash/s mining rig when the difficulty is 20000: $ python -c "print 20000 * 2**32 / 10**9 / 60 / 60.0" 23.85 and find that it takes just ... Wieso werden Bitcoin und Ethereum unterschiedlich geschürft? Zahlt es sich aus, zum Miner zu werden? Und was ist Proof of Stake? Dieser Artikel beantwortet Fragen rund ums Mining.

[index] [51334] [761] [41563] [51320] [29068] [8370] [43858] [8620] [26055] [2828]

Cryptocurrency Mining Difficulty Explained - Mining Difficulty And Analysis

In Bitcoin's mining process, the goal is to find a hash below a target number which is calculated based on the difficulty. Proof-of-work in Bitcoin's mining takes an input consists of Merkle Root ... 01:18 Market Update 02:18 BTC Difficulty and Hash Rate Drop 05:01 Satoshi Nakomoto Won't Sell Bitcoin 07:28 eToro Market Analysis 10:59 Paxful in India 13:36 IOST NFT Collectibles and Mystery Box ... #Mining #Ethereum #Cryptocurrency Welcome to the 11th episode of CCMDL , January 21 2020 We go over talk a little about the difficulty of Ethereum , Bitcoin, Monero & LiteCoins difficulty for ... This usually relates to the difficulty of generating a new hash address, also known as mining. This is a variable that the Bitcoin system is using to keep the growth of new Bitcoins on a ... For context, that’s double what the hash rate was at one year ago and 1,000% higher than the hash rate at Bitcoin’s $20,000 high. Bitcoin’s network difficulty, which regulates how fast ...

#